Юный техник, 2009 № 08 - [10]

Шрифт
Интервал

А. ПЕТРОВ

ЗА СТРАНИЦАМИ УЧЕБНИКА

Тайны грозы

Молния — явление очень распространенное. По подсчетам ученых, гигантские электрические искры длиной в десятки километров, имеющие скорости порядка 1000 км/ч, температуру около 30 000 градусов и напряжение в миллиард вольт, проскакивают в атмосфере до 8 млн. раз в сутки. И в то же время молния — одно из самых загадочных явлений, природу которого начинают по-настоящему понимать только в наши дни.


Откуда берется чудовищная сила грозы? В незапамятные времена грозу считали явлением божественным. Однако со временем люди поняли, что молния — это гигантская электрическая искра. Знание это далось не просто. Вспомним хотя бы эксперименты Георга Рихмана, запускавшего воздушного змея в грозовую тучу. «И вышла из него Електрическая сила через пальцы, разодрав башмак», — писал по случаю смерти своего сподвижника Михаил Ломоносов.

Гибель Рихмана приостановила попытки понять природу грозы. Но не надолго. Удары молний в шпили церквей, в первые многоэтажные здания, а то и пороховые склады требовали безотлагательных мер по защите строений от «небесной искры». И здесь мы должны сказать спасибо американцу Бенджамену Франклину, предложившему конструкции первых громоотводов.

Люди продолжают исследовать грозу и поныне. Наиболее удобное место для этого на планете — полигон неподалеку от городка Дарвин, в Северной Австралии. Никто не знает почему, но грозы здесь гремят почти каждый день. Причем очень сильные — за несколько часов можно наблюдать до 1500 разрядов. Именно здесь с помощью радаров, ракет и самолетов ученые ищут ответы на многие интересующие их вопросы.



Прежде всего: откуда гроза берет электричество для молний? Наиболее распространенная гипотеза сегодня такова. Облака действуют подобно гигантской электростатической машине. На большой высоте капельки воды замерзают и превращаются в кристаллы льда. Хаотично перемещаясь под действием воздушных потоков внутри облака, они трутся друг о друга, приобретая электрические заряды разного знака. Причем отрицательные, как показали измерения, проведенные не столь давно с помощью летающей лаборатории — нашего высотного самолета «Стратосфера», арендованного австралийцами, — скапливаются в нижней части, а положительные — в верхней. Кроме того, положительный заряд обычно имеет и поверхность нашей планеты. Таким образом, при накоплении достаточной разности потенциалов происходит электрический пробой между различными частями облака, а также между облаком и землей.

Так гласит теория. Но согласуется ли она с практикой?

Чтобы между двумя разнополярными электродами, расположенными в метре друг от друга, в воздухе проскочила искра, необходимо напряжение не менее миллиона вольт. Но ведь молнии бывают длиной в десятки километров. Здесь для пробоя. нужны напряжения в десятки миллиардов вольт. Но бывают ли в облаках такие потенциалы?

Специалисты Центра по изучению молний во Флориде с помощью ракет, которые запускали прямо внутрь грозовых облаков, убедились, что напряжения в молнии зачастую недостаточно, чтобы пробить многокилометровый воздушный промежуток. Тем не менее, молниевые разряды все же происходят. Каким образом?

Ответ на этот вопрос ученые нашли даже не в атмосфере — в далеком космосе. Представьте, где-то далеко-далеко от нас, в дальней галактике, взорвалась звезда, породив излучение. Космические лучи рано или поздно достигают Земли и атакуют атмосферу. При пролете же через воздушное пространство возникает гамма-излучение, порождающее рентгеновские лучи. А они, в свою очередь, создают в атмосфере проводящие каналы из ионизированного воздуха…

Гипотеза красивая. Впрочем, даже высказавший ее Джозеф Двайер, профессор из университета Флориды, не был уверен в ней до конца, хотя в атмосфере и были экспериментально обнаружены импульсы рентгеновского излучения, совпадающие по времени с разрядами молний.

Во-первых, взрывы сверхновых не такое уж частое явление во Вселенной, а между тем молнии сверкают на земном шаре едва ли не ежесекундно. Во-вторых, сами космические лучи не обладают достаточной мощностью, чтобы пробить весь многокилометровый слой воздуха. Наконец, в конце 90-х годов XX века в грозовом облаке с помощью аппаратуры, размещенной на воздушных шарах, экспериментально зафиксировали резкую вспышку гамма-излучения с энергией фотонов до 100 Кэв. Обычно излучение, создаваемое космическими лучами, в 1000 раз слабее! Что придает столь огромную мощность вспышкам гамма-излучения?

Ответ на этот вопрос настолько заинтересовал исследователей, занимающихся изучением грозы, что в 1991 году они собрались в Национальной лаборатории в Лос-Аламосе, США, для его обсуждения.

Многочасовые прения так ни к чему и не привели, и огорченные ученые стали разъезжаться по своим лабораториям. Был среди них и заведующий сектором взаимодействия радиоволн с плазмой Физического института РАН, академик Александр Викторович Гуревич.

«На обратном пути мне пришлось полтора часа провести в аэропорту Альбукерке в ожидании вылета, — вспоминает он. — Делать было нечего, я просто сидел и думал о загадках грозы. И неожиданно мне стал понятен новый физический механизм электрического пробоя — того явления, которое теперь называется пробоем на убегающих электронах. Это новое физическое явление, в основе которого лежит классический механизм взаимодействия быстрых частиц с веществом, замечательные особенности которого были открыты Резерфордом еще в начале прошлого столетия»…


Еще от автора Журнал «Юный техник»
Юный техник, 2013 № 02

Популярный детский и юношеский журнал.


Юный техник, 2012 № 07

Популярный детский и юношеский журнал.


Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2004 № 04

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Рекомендуем почитать
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов. Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально. Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании. В формате PDF A4 сохранен издательский макет.


Юный техник, 2015 № 11

Популярный детский и юношеский журнал.


Юный техник, 2015 № 09

Популярный детский и юношеский журнал.


Юный техник, 2015 № 01

Популярный детский и юношеский журнал.


Наука и техника, 2007 № 01 (8)

«Наука и техника» — ежемесячный научно-популярный иллюстрированный журнал широкого профиля.Официальный сайт http://naukatehnika.com.


Интернаука №16 ((часть2) 2020

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.