Ядерные реакторы - [12]

Шрифт
Интервал

Среди других элементарных частиц антипротон занимает несколько особое место. Дело в том, что история этой частицы начинается не с момента ее открытия, то есть с 1955 года, а значительно раньше.

Еще в 1928 году, когда известный физик Дирак создал уточненную теорию электрона, он с удивлением увидел, что из написанных им на бумаге уравнений вытекают не только свойства самого электрона. Эти уравнения указывали на существование еще и другой частицы, по своим свойствам противоположной электрону. Тут не могло быть математической ошибки, так как это уравнение очень точно предсказывало наблюдаемое в опыте поведение электрона. Но, может быть, Дираку следовало поступить так же, как школьнику, решающему задачу с квадратным уравнением: выбрать решение, имеющее физический смысл, а другое отбросить! Нет, уравнение Дирака говорит об одновременном существовании двух частиц: электрона и какого-то антиэлектрона. Дирак с большим сомнением рассказывал своим коллегам, что по совершенно непонятной ему причине его уравнение для электрона описывает частицу с массой электрона, но имеющую положительный заряд.

Сейчас мы знаем, что антиэлектроном оказался позитрон. Он был предсказан за несколько лет до своего открытия и обнаружен сначала в космических лучах, а затем уже получен искусственно. Позитрон — это удивительное, как бы зеркальное отображение своего собрата электрона.

Теория Дирака дает нечто большее, чем предсказание существования позитрона. Она говорит о существовании античастиц у тяжелых ядерных частиц: антипротона и антинейтрона, и дает возможность также предсказать основные свойства этих частиц. В частности, антипротон должен обладать массой, равной массе протона, и в противоположность ему иметь отрицательный заряд. При встрече с протоном такая пара, протон-антипротон, исчезает. Эта атомная катастрофа по своим масштабам значительно больше, чем аннигиляция электрона и позитрона, и сопровождается выделением энергии, равной двум миллиардам электронвольт.

Получить антипротон значительно труднее, нежели позитрон. Для рождения пары электрон-позитрон нужен гамма-квант с энергией около одного миллиона электронвольт. Рождение же антипротона может произойти только при столкновении двух нуклонов. При этом должна затратиться энергия, равная двум миллиардам электронвольт.

Вполне естественно, что ученые пытались вначале найти антипротоны в космических лучах, где происходит столкновение ядерных частиц с колоссальной энергией. Однако найти следы антипротона в фотоэмульсии среди миллионов следов других частиц различной массы и энергии, конечно, очень трудно. Были найдены следы, которые, судя по многим признакам, должны принадлежать антипротонам. Но здесь могла быть и ошибка. Поэтому ученые обратились к мощным ускорителям, на которых получается очень много заряженных частиц с энергией в несколько миллиардов электронвольт.

Трудности получения антипротона усугубляются тем обстоятельством, что при столкновении нуклонов не вся энергия расходуется на рождение пары протон-антипротон. Большая часть энергии удерживается сталкивающимися нуклонами. Поэтому для рождения антипротона нужна энергия не менее четырех миллиардов электронвольт, если столкновение происходит между свободными протонами (или нейтронами), и больше пяти миллиардов электронвольт, если столкновение нуклонов происходит внутри ядра.

Протоны с такой энергией были получены в 1955 году на большом ускорителе — космотроне в Беркли (Калифорния), и это дало возможность группе американских физиков под руководством Сегре, Чемберлена и других в 1955 году получить антипротоны при бомбардировке быстрыми протонами медной мишени.

Физики уже не сомневались, что раз существует антипротон, то должен существовать антинейтрон. Его труднее обнаружить, потому что, как и нейтрон, он не регистрируется обычными счетчиками и не оставляет следа в фотоэмульсии. Но, помимо других отличий от обычного нейтрона, эта частица обладает еще способностью к аннигиляции. Это обстоятельство позволило ученым в 1956 году обнаружить и антинейтрон.

Открытие антипротона и антинейтрона, по-видимому, не сулит нам новых возможностей в получении атомной энергии. Но изучение новых элементарных частиц позволяет глубже познать само ядро, характер и свойства ядерных сил, а это очень важно для развития ядерной физики, техники и ядерной энергетики.

Сейчас, когда доказана возможность рождения антипротонов и антинейтронов, можно поставить вопрос о возможности существования различных антивеществ. Действительно, пока не найдено никаких фактов, которые противоречили бы этому. Антиводород в этом случае состоял бы из ядра — антипротона, вокруг которого движется один позитрон. Ядро атома антигелия должно быть построено из двух антипротонов и двух антинейтронов; вокруг этого ядра вращаются два позитрона и т. д.

Надо иметь в виду, что существовать одновременно в одном месте вещество и антивещество не могут. Произойдет аннигиляция протонов и антипротонов, нейтронов и антинейтронов, электронов и позитронов. «Выживет» только то вещество, которого в данном месте находится больше. Поэтому на земле, конечно, нет ни тяжелых античастиц, ни антивеществ. По-видимому, если современное представление о происхождении солнечной системы правильно, то Солнце и все планеты также состоят из обычного вещества. Относительно других звезд и звездных систем мы это утверждать не можем. Спектральные исследования света, приходящего от звезд, не могут пока дать ответа на вопрос, какое там находится вещество.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Термоядерное оружие

Книга рассчитана на широкий круг читателей, интересующихся термоядерными процессами, термоядерным оружием, принципами его устройства и действия. В книге воины Советской Армии и Военно- Морского Флота познакомятся с наиболее мощным современным видом ядерного оружия — термоядерным оружием, а также с защитой от его поражающего действия. При ознакомлении с книгами серии следует учитывать, что международная система единиц СИ была принята только в 1960 году, а в СССР введена 1 января 1963 года, «в качестве предпочтительной»; теория «ядерной зимы» зародилась в 1983–1985 гг.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.


О неслышимых звуках

Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».