Ядерные реакторы - [11]

Шрифт
Интервал

Если в ядре слишком много нейтронов, оно неустойчиво и становится более прочным, выбрасывая в радиоактивном распаде электрон и нейтрино. При этом один из нейтронов превращается в протон. Наоборот, если в ядре находится избыток протонов, то наиболее вероятен позитронный радиоактивный распад.

Переход ядра в устойчивое состояние происходит не обязательно при одном распаде. Очень часто только в результате целого ряда радиоактивных превращений с вылетом альфа- и бета-частиц, сопровождаемых гамма-излучением, радиоактивное ядро переходит в ядро устойчивого элемента. Так, ядро урана>238, претерпевая ряд превращений, постепенно переходит в ядро свинца>206.

Схему этого ряда превращений можно проследить по рис. 8. Мы видим, как ядро урана>238 выбрасывает альфа-частицу и превращается в ядро тория>234. Но это ядро также неустойчиво. Оно перегружено нейтронами. Происходит превращение одного из нейтронов в протон с вылетом электрона и нейтрино. Получается ядро протактиния>234, которое тем же способом переходит в ядро урана>234. Вылет электрона недостаточно «охлаждает» ядро, и поэтому этот распад сопровождается гамма-излучением.


Рис. 8. Радиоактивный распад ядра урана>238. Ядро урана>238, претерпевая ряд радиоактивных превращений, переходит в устойчивое ядро свинца>206

Далее следует длинный ряд преобразований с испусканием альфа-частиц, а иногда и гамма-лучей. В результате этих превращений образуется изотоп свинца — свинец>214. Но этот свинец неустойчив. Он также перегружен нейтронами, его ядро, испуская электрон, образует ядро висмута>214, которое, теряя альфа-частицу, переходит в ядро таллия>210. В этом неустойчивом ядре все еще есть излишки нейтронов. Лишние нейтроны превращаются в протоны, и ядро, три раза испуская электрон, переходит в ядро полония>210, из которого вылетает альфа-частица, и, наконец, образуется вполне устойчивое ядро свинца>206.

Интересно, что получающееся при промежуточных превращениях ядро висмута>210 может распадаться двумя способами: излучая электрон или альфа-частицу. В обоих случаях конечным ядром является ядро свинца>206.

Не следует думать, что все эти процессы протекают очень быстро. В среднем проходит много миллиардов лет, прежде чем из ядра урана>238 получится ядро свинца>206. Отдельные превращения происходят очень быстро, другие требуют тысяч, миллионов и даже миллиардов лет. Например, среднее время «жизни» ядер урана>234 около 380 тысяч лет, тория>234 — 35 дней, а свинца>214 — 38 минут.

Было бы неправильным сравнивать среднее время «жизни» радиоактивного ядра со средним временем жизни, например, человека. Вполне закономерно то, что человек умирает не в юношеском, а в престарелом возрасте, так как изношенный организм старого человека сильнее подвержен различного рода заболеваниям.

Но нельзя говорить об «износе» радиоактивных ядер. Эти ядра «умирают» независимо от внешних обстоятельств. Законы радиоактивных превращений таковы, что с одинаковой вероятностью распадаются как старые, давно образовавшиеся ядра, так и молодые, только что получившиеся из другого радиоактивного ядра.


Новые элементарные частицы. Для того чтобы объяснить плотность и огромную прочность ядра, в 1935 году японский физик Юкава предположил, что ядерные силы вызываются особыми частицами, в 200–300 раз тяжелее электрона. Один из нуклонов испускает эту частицу, другой ее поглощает. Таким образом, частица связана с каждым из нуклонов и обусловливает ядерные силы между ними. Эта на первый взгляд странная теория Юкавы, как мы знаем, позволила объяснить величину ядерных сил и обстоятельство, благодаря которому эти силы действуют на весьма малом расстоянии.

Надо было найти такую частицу. И вот в 1937 году появилось сообщение, что в космических лучах были действительно найдены частицы, обладающие подходящей массой. Но ликование физиков было преждевременным. Вновь открытая частица — мю-мезон очень слабо взаимодействовала с ядрами и поэтому, естественно, не могла играть роли связующего звена между протоном и нейтроном.

Десять долгих лет физики усиленно искали другую частицу. Наконец ее след был обнаружен в эмульсии фотопластинки, облученной космическими лучами высоко в горах. Она оказалась несколько тяжелее своей предшественницы и была названа пи-мезоном. Пи-мезон живет очень недолго — несколько миллиардных долей секунды и затем превращается в знакомый нам мю-мезон, излучая при этом нейтрино. Пи-мезон живет примерно в 100 раз меньше мю-мезона. Вот поэтому физики так долго и не могли обнаружить пи-мезоны. Ведь 99 процентов времени своей жизни они проводят в виде мю-мезонов.

Как мы уже с вами знаем, пи-мезоны и оказались частицами, о существовании которых предполагал Юкава. По-видимому, они и обусловливают ядерные силы, действующие между протонами и нейтронами. Пи- и мю-мезоны могут быть отрицательными и положительными, в зависимости от знака электрического заряда, который всегда равен по величине заряду электрона. Найден был также пи-мезон, не имеющий электрического заряда.

Последние годы оказались для физиков весьма продуктивными. Было найдено больше десятка новых элементарных частиц: ка-мезоны с массой около 1000 электронных масс и гипероны — частицы тяжелее протонов. Большинство этих частиц было найдено в космических лучах. Сейчас, когда ученые обладают весьма мощными ускорителями заряженных частиц, различные мезоны получаются искусственно.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Термоядерное оружие

Книга рассчитана на широкий круг читателей, интересующихся термоядерными процессами, термоядерным оружием, принципами его устройства и действия. В книге воины Советской Армии и Военно- Морского Флота познакомятся с наиболее мощным современным видом ядерного оружия — термоядерным оружием, а также с защитой от его поражающего действия. При ознакомлении с книгами серии следует учитывать, что международная система единиц СИ была принята только в 1960 году, а в СССР введена 1 января 1963 года, «в качестве предпочтительной»; теория «ядерной зимы» зародилась в 1983–1985 гг.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.


О неслышимых звуках

Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».