Ядерные реакторы - [10]

Шрифт
Интервал

:

Азот>13→углерод>13+позитрон,

то есть вместо семи протонов и шести нейтронов в новом ядре будет уже шесть протонов и семь нейтронов. Здесь мы имеем превращение протона в нейтрон и позитрон. Становится ясным, что представление о том, что нейтрон состоит из протона и электрона, несовместимо с существованием радиоактивности, с образованием позитрона.

Современная теория утверждает, что протоны и нейтроны в процессе их взаимодействия в ядре могут превращаться друг в друга с испусканием электрона или позитрона. Эти частицы и излучаются ядром при радиоактивном распаде.

Что же происходит с ядром после этого?

Излучение электрона связано с тем, что один из нейтронов превращается в протон, что, естественно, приводит к увеличению положительного заряда ядра. Мы получаем ядро следующего элемента периодической системы. Например, при распаде трития (изотопа водорода) образуется изотоп гелия.

В случае позитронной радиоактивности, наоборот, протон превращается в нейтрон, ядро теряет положительный заряд, равный заряду протона, и номер элемента становится на единицу меньше. Это происходит, например, при превращении азота>13 в углерод>13.

Однако в поведении радиоактивного ядра при испускании электрона и позитрона есть что-то странное. В каждом подобном акте ядро теряет вполне определенную энергию. Можно ожидать, что энергия (или скорость) всех электронов (или позитронов), испускаемых ядрами этого сорта, будет одинакова. Физики сумели измерить эту энергию, и неожиданно оказалось, что излучаемые электроны обладают самыми различными энергиями — от очень малой до максимальной энергии, теряемой радиоактивным ядром.

Тут обнаружилось какое-то неблагополучие. Ядро передает электрону совершенно определенную энергию. Но в процессе этой передачи часть энергии где-то пропадает.

Явное несоответствие с законом сохранения энергии, который утверждает, что энергия никогда не возникает и не пропадает!

Но, может быть, часть энергии уносят с собой гамма-кванты, часто сопровождающие испускание электрона или позитрона?

Однако измерения показали, что гамма-квант уносит с собой всегда определенную часть энергии и испускается позже электрона. Кроме того, энергия, теряемая ядром, всегда равна сумме энергии гамма-кванта и максимальной энергии электрона.

А если вылетевший электрон не обладает максимальной энергией, то куда же девается ее часть, недостающая до максимальной?

Может быть, можно объяснить странное поведение радиоактивного ядра, если предположить, что из него одновременно вылетают два электрона?

Действительно, в этом случае у каждого из электронов может быть самая различная энергия. Сумма этих энергий должна быть равна энергии, теряемой ядром. Однако такое предположение сразу же опровергается тем обстоятельством, что ядро при электронном или позитронном распаде всегда теряет или приобретает заряд, соответствующий одному элементарному заряду.

Такое положение привело к тому, что реакционно настроенная часть зарубежных физиков снова стала утверждать, что закон сохранения энергии — один из самых фундаментальных законов природы — не выполняется в атомных и ядерных процессах.

Очень скоро было показано, что для того чтобы устранить все сомнения, достаточно предположить, что одновременно с электроном (позитроном) вылетает еще одна нейтральная частица — нейтрино, которая и уносит с собой недостающую часть энергии. Таким образом, взаимопревращение нейтрона и протона можно записать следующим образом:

Нейтрон↔протон+электрон+нейтрино,
Протон↔нейтрон+позитрон+нейтрино.

Стрелки разных направлений указывают, что может быть и обратный процесс: протон, электрон и нейтрино превращаются в один нейтрон.

Существование нейтрино доказывается не только радиоактивным распадом. Оно подтверждается также рядом других экспериментальных фактов, полученных за последние годы физиками.

Благодаря отсутствию электрического заряда и очень малой массе нейтрино слабо взаимодействует с окружающими атомами и ядрами; в лучшем случае эта частица ионизирует один атом на пути 500 километров. Чтобы обнаружить такую частицу, нужны очень тонкие и сложные эксперименты.

Долгое время усилия физиков в этом направлении оставались безуспешными. Только совсем недавно, в конце 1953 года, исследования с достаточной достоверностью доказали, что нейтрино действительно существует.

Так потерпела окончательный крах реакционная идеалистическая концепция, отрицающая применимость закона сохранения энергии в микромире атома и ядра.

У читателя могут возникнуть вопросы: почему происходит электронный или позитронный распад? Почему при распаде одни ядра испускают электроны, а другие позитроны?

Современная физика дает ответ и на эти вопросы.

Исследования показали, что для того, чтобы атомные ядра были более прочными, протоны и нейтроны должны находиться в ядре в определенном соотношении. Это соотношение меняется для различных ядер. Так, легкие ядра более прочны, если они состоят из равного количества протонов и нейтронов. Средние и тяжелые ядра становятся прочнее, если в них несколько преобладает число нейтронов.

В тяжелых ядрах электростатические силы, расталкивающие протоны, настолько велики, что эти ядра становятся неустойчивыми даже при большом избытке нейтронов. Поэтому находящиеся в конце периодической системы элементы являются радиоактивными и их ядра могут стать более прочными, только излучая различные частицы.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Термоядерное оружие

Книга рассчитана на широкий круг читателей, интересующихся термоядерными процессами, термоядерным оружием, принципами его устройства и действия. В книге воины Советской Армии и Военно- Морского Флота познакомятся с наиболее мощным современным видом ядерного оружия — термоядерным оружием, а также с защитой от его поражающего действия. При ознакомлении с книгами серии следует учитывать, что международная система единиц СИ была принята только в 1960 году, а в СССР введена 1 января 1963 года, «в качестве предпочтительной»; теория «ядерной зимы» зародилась в 1983–1985 гг.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.


О неслышимых звуках

Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».