Я — математик. Дальнейшая жизнь вундеркинда - [19]
Векторное исчисление не очень новая область математики. Более полутораста лет тому назад люди уже знали, что в трехмерном пространстве существуют «направленные величины» (условно говоря, «величины со стрелками»), которые можно складывать. Так, например, если сделать один шаг в направлении одной стрелки, а затем второй в направлении другой, то совокупность двух шагов можно рассматривать как один «суммарный» шаг в некотором новом направлении. Мы не можем здесь останавливаться на множестве других операций, которые математики умеют производить с такими «направленными величинами». Существенно только подчеркнуть, что, как уже давно было известно, подобное «векторное исчисление» возможно и в пространствах, число измерений которых превосходит три, и даже в бесконечномерных пространствах.
Созданная Фреше общая теория перехода к пределу и дифференцирования применима ко многим различным пространствам и в том числе ко всем векторным пространствам. Однако она вовсе не требует, чтобы элементы пространства обязательно рассматривались как «отрезки со стрелкой». Тем не менее класс векторных пространств представляет собой весьма существенную область приложения общей теории Фреше и, безусловно, заслуживает специального выделения при помощи соответственно подобранной системы аксиом. Фреше, который не считал векторные пространства более важными, чем другие «обобщенные пространства», не пытался продвинуться в этом направлении, я же с горячностью взялся за дело, решив довести его до конца. Теория, к которой я пришел, оказалась тесно связанной с так называемой теорией групп, изучающей правила комбинирования последовательных преобразований любой совокупности объектов; фактически она представляла собой интересный специальный раздел этой весьма общей теории.
Мне удалось построить полную систему аксиом, определяющую всевозможные векторные пространства. Работа понравилась Фреше, но не произвела на него особенно сильного впечатления. Однако через несколько недель, увидев в польском математическом журнале статью Стефана Банаха, содержащую точно те же результаты — не более и не менее общие, — он страшно разволновался. Банах сделал то же, что и я, но на несколько месяцев раньше. Поскольку трудились мы совершенно независимо, полная самостоятельность обеих работ не вызывала никаких сомнений.
В результате в течение некоторого времени изученные мной и Банахом пространства так и назывались пространствами Банаха-Винера. С тех пор прошло тридцать четыре года, на протяжении которых теория этих пространств не переставала привлекать внимание исследователей. Но хотя за это время появилось немало относящихся к ней работ, только сейчас начинает полностью выявляться ее значение в разнообразных разделах математики.
Какое-то время я еще продолжал трудиться в этой области и даже опубликовал одну-две работы, но постепенно увлекся совсем другой тематикой. Поэтому сейчас такие векторные пространства совершенно справедливо называют именем одного Банаха.
Я, безусловно, был одним из родителей этого ребенка, выношенного не в чреве женщины, а в голове мужчины, но по некоторым соображениям я в конце концов от него отказался. Во-первых, мне не хотелось торопиться, во-вторых, не хотелось изо дня в день внимательно следить за литературой. При создавшейся тогда ситуации то и другое было совершенно необходимо, так как иначе я не мог быть уверен, что Банах или кто-нибудь другой из его польских учеников уже не получили те или иные интересные данные, которые я еще только собираюсь опубликовать. Каждая математическая работа делается под некоторым давлением, но когда это давление усиливается еще за счет соревнования, в котором многое зависит от чистой случайности, оно становится для меня нестерпимым.
Существует, кроме того, еще одно обстоятельство, которое я всегда учитываю, принимаясь за ту или иную работу. Я говорю сейчас о той стороне математического творчества, к которой большинство относится весьма пренебрежительно и которую я называю математической эстетикой. Необходимость ответить на вопрос, что именно я имею в виду, ставит передо мной очень трудную задачу: я должен рассказать людям, не занимающимся математикой, не только о сущности того, что я сделал, но и о том, как я лично к этому отношусь. Для этого мне придется объяснить, почему некоторые проблемы, считавшиеся в течение долгого времени интересными, не только не вызывали у меня ни малейшего желания заняться ими, но оказались совершенно непригодными для приложения моих сил и способностей.
Тут передо мной возникают трудности, с которыми в той или иной форме сталкивается каждый ученый, добившийся серьезных успехов в такой сложной и в высшей степени индивидуальной области творчества, как математика, и возымевший намерение рассказать о своей жизни. Композитор, говоря о себе, не может ничего не сказать о технике композиции, гармонии и контрапункте, составляющих сущность его работы, хотя, за исключением профессиональных музыкантов, эту сторону его творчества сумеют оценить лишь немногие постоянные слушатели, да и то в весьма незначительной степени. Писатель или художник, задумавший написать свою автобиографию, сталкивается с этой же проблемой. Правда, он может утешить себя мыслью, что наиболее образованная часть общества все-таки в состоянии оценить результаты его творчества. И тем не менее ни один писатель и ни один художник не может считать, что честно написал свою автобиографию, если он не рассказал о своем творчестве того, что по-настоящему могут оценить только его товарищи по работе, да и то не все, а лишь наиболее квалифицированные из них.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Кибернетика» — известная книга выдающегося американского математика Норберта Винера (1894—1964), сыгравшая большую роль в развитии современной науки и давшая имя одному из важнейших ее направлений. Настоящее русское издание является полным переводом второго американского издания, вышедшего в 1961 г. и содержащего важные дополнения к первому изданию 1948 г. Читатель также найдет в приложениях переводы некоторых статей и интервью Винера, включая последнее, данное им незадолго до смерти для журнала «Юнайтед Стэйтс Ньюс энд Уорлд Рипорт».Книга, написанная своеобразным свободным стилем, затрагивает широкий круг проблем современной науки, от сферы наук технических до сферы наук социальных и гуманитарных.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Творец и робот» – последняя книга основоположника кибернетики Норберта Винера, увидевшая свет в 1964 году, вскоре после смерти автора. Она создана на материале популярных лекций и представляет собой небольшой цикл социально-философских очерков, объединенных одной внутренней темой. Тема эта – в широком смысле – соотношение между творцом и его творением, между творческими силами человека и созданной его гением кибернетической машиной.
Герой Советского Союза генерал армии Николай Фёдорович Ватутин по праву принадлежит к числу самых талантливых полководцев Великой Отечественной войны. Он внёс огромный вклад в развитие теории и практики контрнаступления, окружения и разгрома крупных группировок противника, осуществления быстрого и решительного манёвра войсками, действий подвижных групп фронта и армии, организации устойчивой и активной обороны. Его имя неразрывно связано с победами Красной армии под Сталинградом и на Курской дуге, при форсировании Днепра и освобождении Киева..
В первой части книги «Дедюхино» рассказывается о жителях Никольщины, одного из районов исчезнувшего в середине XX века рабочего поселка. Адресована широкому кругу читателей.
Книга «Школа штурмующих небо» — это документальный очерк о пятидесятилетнем пути Ейского военного училища. Ее страницы прежде всего посвящены младшему поколению воинов-авиаторов и всем тем, кто любит небо. В ней рассказывается о том, как военные летные кадры совершенствуют свое мастерство, готовятся с достоинством и честью защищать любимую Родину, завоевания Великого Октября.
Автор книги Герой Советского Союза, заслуженный мастер спорта СССР Евгений Николаевич Андреев рассказывает о рабочих буднях испытателей парашютов. Вместе с автором читатель «совершит» немало разнообразных прыжков с парашютом, не раз окажется в сложных ситуациях.
Из этой книги вы узнаете о главных событиях из жизни К. Э. Циолковского, о его юности и начале научной работы, о его преподавании в школе.
Со времен Макиавелли образ политика в сознании общества ассоциируется с лицемерием, жестокостью и беспринципностью в борьбе за власть и ее сохранение. Пример Вацлава Гавела доказывает, что авторитетным политиком способен быть человек иного типа – интеллектуал, проповедующий нравственное сопротивление злу и «жизнь в правде». Писатель и драматург, Гавел стал лидером бескровной революции, последним президентом Чехословакии и первым независимой Чехии. Следуя формуле своего героя «Нет жизни вне истории и истории вне жизни», Иван Беляев написал биографию Гавела, каждое событие в жизни которого вплетено в культурный и политический контекст всего XX столетия.