Вселенная внутри вас - [8]
Проникновение во внутренности атома
Уже вскоре после того, как в 1912 году было доказано существование атомов, выяснилось, что само название «атом» не вполне корректно. Атом не является неделимым. В нем имеются составные части. Ученым уже было известно, что атом содержит отрицательно заряженные частицы – электроны, которые могут его покидать. Поначалу предполагалось, что они находятся внутри положительно заряженной массы подобно сливам внутри сливового пудинга (такое описание предложил английский физик Дж. Томсон). Однако один новозеландец с пышными усами, работавший в Кембриджском университете, доказал, что это совсем не так.
Эрнест Резерфорд выдвинул идею бомбардировки атома другими частицами, чтобы понаблюдать за их реакцией. Это то же самое, что бросать мяч в невидимый предмет и по отскоку судить о свойствах предмета. В роли мяча выступали открытые незадолго до этого альфа-частицы, испускаемые радиоактивными веществами (позднее было установлено, что альфа-частица – это ядро атома гелия). При попадании на экран, покрытый флюоресцентным составом, эти частицы производили слабые вспышки. Помощники Резерфорда в темной комнате могли наблюдать за вспышками, вызванными отклонением альфа-частиц от золотой фольги.
Сила воображения, без которой немыслима никакая наука, позволила Резерфорду и его команде предположить, что какая-то из альфа-частиц может отразиться от атома золота в прямо противоположном направлении. Так оно в конце концов и случилось. Результат поразил исследователей. По словам Резерфорда, это было то же самое, как если бы артиллерийский снаряд отразился от папиросной бумаги и полетел обратно. Он догадался, что в атоме должно быть маленькое, но очень плотное, положительно заряженное ядро, которое способно оттолкнуть альфа-частицу. Резерфорд впервые предложил знакомую нам картину атома, похожего на Солнечную систему, в центре которой располагалось положительно заряженное ядро (этот термин он позаимствовал у биологии), а вокруг него – отрицательно заряженные электроны, напоминавшие планеты.
Сливовый пудинг Томсона ушел в небытие. Ядро было настолько меньше самого атома, что его сравнивали с блохой посреди кафедрального собора. По размерам оно составляло 1/100 000 от всего атома и состояло из положительно заряженных частиц, названных протонами. Однако в ядре содержалось до 99,9 процента всей массы. На каждый протон приходился один вращавшийся вокруг него электрон, который уравновешивал электрический заряд. В результате атом оставался нейтральным.
Однако даже эта усовершенствованная картина была еще далека от идеала. В 1932 году в ядре была обнаружена еще одна частица – нейтрон. Он обладал такой же массой, как протон, и с его помощью удалось найти объяснение одной загадке. Дело в том, что существует несколько разновидностей одного и того же элемента, которые называются изотопами. Они не отличаются друг от друга в химическом отношении, но их атомы имеют разный вес. Нейтрон помог разъяснить ситуацию. Количество заряженных частиц определяло, что это за элемент и в какие химические реакции он может вступать, а различия в весе атома зависели от количества нейтронов.
Атом не похож на миниатюрную Солнечную систему
Именно так мы до сих пор и представляем себе атомы, из которых состоит наше тело. Однако после 1932 года наука шагнула далеко вперед. Сегодня ученым известно, что электроны не летают вокруг ядра подобно планетам, вращающимся вокруг Солнца. Планетарная модель атома доказала свою несостоятельность. Если бы она соответствовала действительности, у нас возникли бы проблемы. Заряженная частица при ускорении испускает энергию в форме света. А ведь вращение по орбите неизбежно связано с ускорением. Дело в том, что ускорение означает изменение не столько скорости как таковой, сколько вектора скорости.
Скорость представляет собой числовую величину, например 50 километров в час. Вектор скорости – это более многозначное понятие, объединяющее в себе и скорость, и направление движения, например 50 километров в час в северном направлении. Ускорение возникает, когда происходит изменение одной из двух составляющих вектора скорости. Так что даже если мы будем продолжать двигаться с той же скоростью 50 километров в час, но изменим северное направление на восточное, возникнет ускорение. Таким образом, если представить себе, что электрон с бешеной скоростью носится вокруг ядра подобно миниатюрной планете, он постоянно будет менять направление движения и, следовательно, находиться в состоянии непрерывного ускорения. А это значит, что он будет терять энергию, испуская свет, и в доли секунды врежется в ядро. Как следствие, все атомы во Вселенной мгновенно самоуничтожатся.
Квантовый переход
Понять, почему мир до сих пор не исчез в грандиозной вспышке света, помогла квантовая теория. Она утверждает, что привычный образ электрона как крошечной частицы, вращающейся по орбите вокруг ядра, неверен. Электрон в любой момент времени находится не в какой-то определенной точке, а одновременно во всех точках, расположенных вокруг ядра, каждая из которых обладает различной вероятностью. Его конкретное местоположение можно установить только в момент наблюдения. Лучше всего представить себе электроны в виде расплывчатого облака вокруг ядра. Конечно, такую картину нарисовать сложнее, поэтому во многих учебниках все еще присутствует старая планетарная модель.
Могут ли прививки привести к аутизму, а прием парацетамола – к астме? Стоит ли налегать на органические продукты? Способствуют ли головоломки развитию мозга? Можно ли считать гиалуроновую кислоту панацеей для кожи?Отвечая на эти и другие подобные вопросы, мы руководствуемся информацией, почерпнутой из журналов, телевидения и интернета. Но часто оказывается, что «непреложные истины» – это лженаучные мифы и домыслы, навязанные СМИ или пережитками прошлого. Автор, известный популяризатор науки из Великобритании Брайан Клегг, показывает, как с ними бороться.
Основной труд замечательного польского ученого-гуманиста, врача-микробиолога и философа Л. Флека впервые публикуется на русском языке. Т. Кун в предисловии к своей знаменитой книге «Структуры научных революций» сослался на работы Л. Флека наряду с блестящими именами А. Койре, Ж. Пиаже, Е. Мецгер и др. как на теоретические источники собственных воззрений о природе научного познания и роли истории науки в формировании эпистемологических моделей. Однако эти работы имеют самостоятельное научное значение и позволяют считать Л.
С человеческим телом часто происходят чудеса. Любое отклонение от принятой нормы не проходит незамеченным. Среди нас живут карлики, гиганты и лунатики. Кто-то подвержен галлюцинациям, кто-то совсем не может есть, многие тоскуют от недостатка солнца. Эти метаморфозы всегда порождали небылицы и мифы, пока наука всерьез не взялась за их изучение. Гэвин Фрэнсис исследует самые живучие мифы и объясняет их природу. Он обращается к изменениям в теле своих пациентов, как долгожданным, так и нежелательным, и объясняет, почему эти метаморфозы не случайны и важны для всего человечества.
Несмотря на то, что проблема мальформации Киари является предметом изучения и обсуждения уже более века, единого алгоритма диагностики, определений показаний, выбора методов и объема хирургического лечения и оценки его результатов не существует и по сей день. Цель работы — повышение эффективности хирургического лечения путем совершенствования диагностики, уточнения показаний к хирургическому вмешательству и оценки его результатов на основании исследования показателей ликвородинамики.
Работа содержит рекомендации по этиологии, эпидемиологии, клинике, диагностике, профилактике, лечению вирусных гепатитов. Предназначено для врачей–специалистов военных организаций здравоохранения, медицинских подразделений соединений и воинских частей Вооруженных Сил.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге изложены современные методы дифференциальной диагностики инфекционных болезней, основанные на анализе типов лихорадки, диареи, сыпи, желтухи, местной и генерализованной лимфаденопатии, являющихся неотъемлемыми признаками инфекционного процесса. Рассмотрены этиология, пути передачи, методы лабораторной диагностики, клинические проявления и способы лечения инфекций. Дан алгоритм постановки правильного диагноза. Для врачей общей практики, инфекционистов, студентов медицинских учебных заведений.