Вселенная в электроне - [13]
Физики нащупали такой ярус, и первые же шаги привели к сенсационным результатам.
Когда часть больше целого
Казалось бы, если частица элементарная, то она не должна иметь частей. Иначе какая же это элементарность, если есть более простые части! И вот первый сюрприз, который природа преподнесла физикам, состоял в том, что элементарная частица протон имеет части!
Когда рядом с протоном находится другой протон или нейтрон, он «играет» с ними в мезонный бадминтон. Если же протон одинок, он играет сам с собой — испускает пи-мезон и поглощает его обратно, снова испускает, ловит и так далее, — как жонглер в цирке. Наверное, все не раз наблюдали, как быстрое мелькание шарика создает впечатление, что вокруг жонглера их целое облако. Так и с протоном. Очень быстро испуская и поглощая обратно мезон, он тоже создает вокруг себя облако частиц. Время каждого отдельного акта испускания и поглощения очень мало, но благодаря многократным их повторениям возникает усредненная по времени пространственная размазка заряда и массы. Образно говоря, нуклон пульсирует, а еще лучше сказать — мигает. Вспыхнет «мезонным светом», погаснет, потом все повторяется заново и так без конца.
Вот как интересно получается: вокруг нас твердые, застывшие тела, а на микроуровне мир, как живой, там все дышит, пульсирует, вращается!
Испустив положительно заряженный мезон, протон превращается в нейтрон, а нейтрон после испускания отрицательного мезона становится протоном. Если же испускается нейтральный мезон, то протон остается протоном, а нейтрон — нейтроном. Во всех случаях пи-мезон, как часть, входит в состав протона и нейтрона.
Сам пи-мезон тоже окружает себя облаком частиц-мячиков. Он на короткое время испускает пару пи-мезонов. Почему именно пару, а не один мезон — это сложный вопрос, связанный с особенностями этой частицы. Для нас сейчас важно то, что пи-мезон не только состоит из частей, но что эти части не отличаются от целого. Мезон состоит из мезонов! Это все равно, как если бы из пчелиного улья вылетали не пчелы, а другие, подобные ему, ульи.
Более того, на очень короткое время мезон может превратиться в нуклон и антинуклон. Например, положительно заряженный мезон π>+ — в протон и антинейтрон, нейтральный мезон π>0 — в протон и антипротон и так далее. Тут уж часть намного больше целого. Получается как в сказке — кит на воде, а вода на ките! Это был второй поразительный сюрприз, преподнесенный природой физикам.
Сегодня известно, что все элементарные частицы имеют «мигающее» строение и содержат внутри себя различные типы легких и тяжелых частиц. Чем легче испущенная частица, тем дальше может она удалиться от центра, прежде чем будет поглощена обратно. Тяжелые частицы, наоборот, жмутся ближе к центру. Поэтому внутренняя центральная часть любой элементарной частицы (ее называют керном — сердцевиной) значительно более массивная и плотная, чем периферия, окраина.
Всякая элементарная частица окутана слоистым «облаком» или, как еще говорят, одета в «шубу» из рождающихся и быстро исчезающих частиц. Даже кванты света — фотоны и всепроникающие нейтрино — имеют свои «шубы». Вокруг них рождаются электроны и позитроны. Только это происходит весьма редко, и «шубы» у фотона и нейтрино необычайно «воздушные», почти эфемерные, как говорится, на рыбьем меху! Лишь на расстояниях, в тысячи раз меньших «шубы» протона, эти частицы приобретают нечто вроде тонкого «свитера», состоящего из мю-мезонов. Такую же тонкую и тесную «шубу» имеет и электрон.
Элементарные частицы, в свою очередь, тоже состоят из элементарных частиц. Получается единая крепко сплетенная сеть, где нет начала и конца, а все частицы одновременно являются и элементарными и сложными. Понятия простого и элементарного в современной физике не совпадают. И самое удивительное здесь то, что часть может быть больше целого. Ничего подобного еще никогда не встречалось. Известный советский физик-теоретик Д. И. Блохинцев как-то в шутку заметил: если атом уподобить органу, то элементарная частица — это аккордеон, рождающий не звуки, а музыкальные инструменты: то барабан, то скрипку, а иногда и большой концертный рояль!
В окружающем нас мире «больших», макроскопических, явлений это противоречит здравому смыслу, выглядит полнейшей бессмыслицей. Но в микромире такое возможно, природа устроена хитрее и изобретательнее любой человеческой фантазии.
Но как быть с законами сохранения массы и энергии? Ведь если протон, оторвав от себя увесистый «кусочек» в виде пи-мезона, остается тем же протоном, откуда взялся «материал» для мезона? Что-то тут не так, не может же, в самом деле, мезон возникнуть «из ничего»!
Энергетическая ванна
Противоречие, можно сказать, налицо. Особенно, когда мезон распадается на нуклон и антинуклон. Конечные частицы в этом случае весят в четырнадцать раз больше начальной. Чтобы понять, как это может быть, нам придется отправиться в далекое путешествие — снова в Древнюю Грецию, а точнее, в окруженный высокими стенами греческий город на юге Апеннинского полуострова, где жил знаменитый греческий ученый Архимед. Его интересовали не только глубокие теоретические проблемы, много времени он отдавал решению практических задач — конструировал подъемные механизмы, создавал военные машины для обороны города, а иногда занимался и более мелкими, но не менее трудными вопросами. Один из таких вопросов задал ему правитель города царь Гиерон. В благодарность за победу, одержанную его войском, царь решил пожертвовать богам золотой венец. Он отвесил мастеру необходимое количество золота, но когда тот принес изготовленную драгоценность, Гиерон — по преданию, очень скупой и жестокий человек — усомнился в его честности и повелел Архимеду придумать, как изобличить плута, не портя, однако, драгоценного венца. Архимед долго не мог сообразить, как справиться с таким необычным поручением. Но вот однажды, садясь в ванну, он заметил, что погруженное в воду тело заметно легчает. Искомое решение задачи четко предстало перед его умственным взором. Говорят, что с криком: «Эврика!» («Нашел!») — обрадованный Архимед среди бела дня голым бежал по городу к дворцу царя.
В книге рассказывается об узловых проблемах современной физической картины мира: о черных и белых дырах во Вселенной, о «прелестных», «ароматных» и «цветных» частицах — кварках, о космических мирах, спрятанных внутри частиц, о пустоте, которая оказывается не пустотой, а материальной субстанцией, о квантах пространства и квантах времени, о гипотетических монополях и антивеществе. Для широкого круга читателей.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.