Вселенная в электроне - [12]

Шрифт
Интервал

Наконец, у самого выхода из зоопарка элементарных частиц расположен загон для фаерболлов. По-английски «фаерболл» — огненный шар. Это что-то похожее одновременно на блуждающую шаровую молнию и на ослепительно яркий сгусток атомного взрыва. Только в микроскопических масштабах. По мнению некоторых физиков, такие фаерболлы образуются при столкновениях сильно разогнанных, обладающих очень большой энергией частиц. Образуются и почти мгновенно распадаются на более легкие частицы.

Скептики шутят, что фаерболл похож на знаменитое чудовище Несси из шотландского озера Лох-Несс. Говорят о нем давно, но до сих пор неизвестно, существует оно на самом деле или нет. Одни его видят, другие нет.

Может, фаерболлы вовсе и не элементарные частицы, а какие-то более сложные образования. Не зря их загон расположен у выхода из зоопарка…

Закрыто на учет

Итак, целая россыпь, сотни элементарных частиц! Как разноцветный бисер, на любой глаз и вкус! А если верить теории, то при слиянии любой пары частиц должна образоваться новая частица, поэтому число их вообще должно быть бесконечным. Расчет показывает, что частиц, которые в два-три раза тяжелее нуклона, должно быть сотни тысяч, а частиц с массой, впятеро большей, чем у нуклона, — уже сотни миллионов!

Трудно согласиться с тем, что природе действительно понадобилось такое огромное количество простейших «строительных деталей». Тем более, что весь мир можно скомпоновать всего из четырех таких деталей: электрона, нуклона, пи-мезона и фотона. Пи-мезоны нужны, чтобы «слепить» из нуклонов атомные ядра, а фотоны и электроны — для того, чтобы «сплести» ажурные конструкции атомов и молекул. Все остальные частицы кажутся просто лишними. Зачем они, если и без них можно обойтись?

Когда слышишь такой вопрос, невольно вспоминаешь, как неискушенный в деле человек пытается починить часы. У него всякий раз что-нибудь да остается — то винтик, то шайбочка. И хотя поначалу кажется, что все в порядке — часы идут, вскоре они почему-то ломаются. Так и с частицами. У природы нет лишних «деталей». Если назначение некоторых из них остается неясным, это говорит лишь об уровне наших знаний на данном этапе…

Отложим пока этот сложный вопрос до следующей главы. Там мы увидим, что многие, кажущиеся сейчас лишними, частицы нужны были на ранних этапах жизни Вселенной. Тогда без них просто нельзя было обойтись. Когда смотришь на россыпь частиц, первое, что хочется сделать, — это попытаться все-таки выделить какие-то «наиболее элементарные» частицы, из которых можно составить все остальные. Говоря словами американского физика Р. Фейнмана, который затратил много усилий на систематику элементарных частиц, такие попытки — что-то вроде детской игры в кубики, из которых нужно собрать целую картинку. Кубиков великое множество, и с каждым днем их становится все больше. Часть валяется в стороне и как будто бы не подходит к остальным. Как определить, что они из одного набора? Откуда известно, что вместе они должны составить цельную картинку? Полной уверенности нет, и это несколько беспокоит. Вселяет надежду лишь то, что у многих кубиков есть нечто общее: на всех нарисовано голубое небо, все они сделаны из дерева одного сорта.

Игрой в частицы-кубики занимались многие. Ей отдали дань самые известные и талантливые физики. И ничего не вышло: оказалось, что все частицы в равной степени элементарны. Среди них нет «более простых» и «более сложных».

Однако их можно разбить на семейства, и членов каждого из них рассматривать как различные состояния одной и той же частицы. (Вспомним еще раз об аналогии с лампочкой, которая меняет свой цвет!) Так были найдены семейства, состоящие из восьми и десяти частиц. Есть семейства, содержащие всего лишь по одной частице. Это мезоны-холостяки.

Семейства объединяются в более сложные группы — кланы. Физики называют такие семейства мультиплетами, а кланы — супермультиплетами (от слова «мульти» — много). Сегодня хорошо изучены супермультиплеты, состоящие из 35 и 56 частиц.

Кроме того, выяснилось, что часть короткоживущих частиц можно считать сильно нагретыми (физики говорят — возбужденными) состояниями остальных.

И самое главное — мультиплеты и супермультиплеты, оказывается, не являются полностью изолированными друг от друга, а связаны определенными родственными отношениями — правилами симметрии.

Если бы частицы, как людей, регистрировали в паспортном столе, то члены семьи-мультиплета имели бы общую фамилию. В клане-супермультиплете были бы представлены разные фамилии, но у всех семей — общие предки. Сами кланы тоже имеют единых прапрародителей.

В целом получается что-то вроде периодической таблицы элементарных частиц, наподобие той, с помощью которой сто лет назад Менделеев навел порядок среди атомов химических элементов. И подобно тому как менделеевская система помогла открыть неизвестные ранее элементы, симметрия мультиплетов также предсказывает существование новых частиц.

Глубокий смысл таблицы Менделеева стал понятен лишь после того, как физика шагнула на новую ступень структурной лестницы — выяснила, что ядра атомов состоят из протонов и нейтронов. Можно предполагать, что и симметрия элементарных частиц получит свое объяснение после того, как будет открыт следующий ярус строения материи.


Еще от автора Владилен Сергеевич Барашенков
Кварки, протоны, Вселенная

В книге рассказывается об узловых проблемах современной физической картины мира: о черных и белых дырах во Вселенной, о «прелестных», «ароматных» и «цветных» частицах — кварках, о космических мирах, спрятанных внутри частиц, о пустоте, которая оказывается не пустотой, а материальной субстанцией, о квантах пространства и квантах времени, о гипотетических монополях и антивеществе. Для широкого круга читателей.


Рекомендуем почитать
Эмбрионы в глубинах времени

Эта книга предназначена для людей, обладающих общим знанием биологии и интересом к ископаемым остаткам и эволюции. Примечания и ссылки в конце книги могут помочь разъяснить и уточнить разнообразные вопросы, к которым я здесь обращаюсь. Я прошу, чтобы мне простили несколько случайный характер упоминаемых ссылок, поскольку некоторые из затронутых здесь тем очень обширны, и им сопутствует долгая история исследований и плодотворных размышлений.


Инсектопедия

Книга «Инсектопедия» американского антрополога Хью Раффлза (род. 1958) – потрясающее исследование отношений, связывающих человека с прекрасными древними и непостижимо разными окружающими его насекомыми.Период существования человека соотносим с пребыванием насекомых рядом с ним. Крошечные создания окружают нас в повседневной жизни: едят нашу еду, живут в наших домах и спят с нами в постели. И как много мы о них знаем? Практически ничего.Книга о насекомых, составленная из расположенных в алфавитном порядке статей-эссе по типу энциклопедии (отсюда название «Инсектопедия»), предлагает читателю завораживающее исследование истории, науки, антропологии, экономики, философии и популярной культуры.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.