Вселенная в электроне - [10]
Открытие античастиц принадлежит к числу тех сравнительно немногих научных достижений, которые приобретают самую широкую известность. Воображение людей поражает сама возможность полной трансформации вещества в излучение.
Когда хотят сказать о предельной степени разрушения чего-либо, часто используют глагол «испепелить». При аннигиляции электрона с позитроном не остается даже пепла. Все вещество — целиком, без остатка — превращается в электромагнитное поле и уносится в пространство. Взрыв атомной или водородной бомбы освобождает лишь несколько процентов запасенной в веществе энергии, при аннигиляции происходит стопроцентное освобождение энергии.
Антипартнера имеет не только электрон. Они есть у всех элементарных частиц. У протона есть антипротон, у нейтрона — антинейтрон и так далее. Это похоже на то, как в мире живых существ есть особи противоположного пола — мужские и женские. Правда, некоторые частицы — например фотон или нейтральный пи-мезон — в одном лице совмещают должность частицы и античастицы. Однако таких «двуполых» частиц мало. Как правило, частица и античастица сильно различаются по своим свойствам. У них противоположные электрические заряды, а если частица нейтральная — например как нейтрон, — то противоположными оказываются другие ее характеристики, в частности, направление вращения. Получается так, что природа отражена в своеобразном зеркале: с одной стороны — частицы, с другой, в «Зазеркалье», — античастицы. И все абсолютно симметрично. Две половинки — мир и антимир! В одном случае атомы построены из электронов, протонов и нейтронов, в другом — из позитронов, антипротонов и антинейтронов.
У писателя И. А. Ефремова есть фантастический рассказ о том, как в далеком космосе встретились посланцы двух биологических рас — одной, живущей на основе кислорода, и другой, основанной на фторе. Все очень похоже, но газ жизни одной расы — смертельный, разъедающий яд для другой. Даже их дыхание опасно друг для друга. То же самое было бы для существ, построенных из вещества и антивещества. Все физические законы, все краски их миров совершенно одинаковы; только от условия зависит, что назвать миром, а что — антимиром. Но при соприкосновении — аннигиляция, взрыв!
Правда, полное излучение вещества происходит не всегда. Так при аннигиляции нуклона с антинуклоном «сгорает» лишь часть вещества, другая его часть остается в виде мезонных осколков. Тем не менее даже с учетом несгоревших «шлаков» энергия антипротонного и антинейтронного взрывов в несколько тысяч раз больше энергии, выделяющейся при аннигиляции легких частиц — электрона и позитрона. Это самое мощное энерговыделение, которое мы умеем осуществлять в лабораторных условиях. Недаром писатели-фантасты часто используют антивещество в качестве горючего для звездолетов будущего. Килограммовый слиток такого вещества даст столько же энергии, сколько можно получить из нефтяного озера глубиной в несколько метров и диаметром около километра. Это означает, что всего несколько килограммов антивещества способны заменить все горючее, которое сжигается на Земле за год.
Конечно, эти килограммы антивещества надо еще изготовить — синтезировать из антипротонов и антинейтронов, а это очень сложная и энергоемкая задача. Пока ученые научились изготавливать лишь самые простые антиядра, состоящие из двух и трех античастиц: антидейтрон, антитритон и легкий изотоп антигелия. Несколько лет назад этот изотоп был получен в опытах на ускорителе протонов, построенном под Москвой, вблизи Серпухова. Синтез тяжелых антиядер — исключительно трудная задача. Правда, трудности здесь технического порядка, никаких принципиальных препятствий на этом пути нет. Возможно, что когда-нибудь изготовление антиядер станет такой же отраслью большой индустрии, как в наши дни производство кюрия и других трансурановых элементов.
Перейдем теперь на соседнюю аллею — к лептонам. Первыми мы встречаем здесь три почти одинаковые частицы: электроны, π-мезон, и τ-мезон. Различаются они лишь своей массой (мю-мезон в двести с лишним раз тяжелее электрона, тау-мезон — еще более тяжелая частица) да еще тем, что, в отличие от электрона, мю- и тау- мезоны радиоактивные, они распадаются на электрон и нейтрино. Правильнее было бы назвать их не мезонами, а тяжелыми электронами. До сих пор до конца неясно, зачем потребовалось природе несколько различающихся по весу «изданий» электронов.
Рядом с клетками электроноподобных частиц, как собачки у ног их хозяев, устроились три нейтрино. Их так и называют: нейтрино электронное, нейтрино мюонное и тау-нейтрино. Каждое из них рождается только вместе со своим хозяином, сопровождает его в реакциях и на соседей не обращает никакого внимания.
Масса нейтрино равна нулю. Все они, как фотон, «бестелесные» и никогда не стоят на месте. Их скорость всегда равна скорости света. Хотя в газетах сообщалось, что точными экспериментами у нейтрино обнаружена маленькая масса, контрольные опыты этого пока не подтвердили. Можно сказать, что нейтрино — это «черный свет». Сочетание противоречивое, но в физике бывает и не такое!
В книге рассказывается об узловых проблемах современной физической картины мира: о черных и белых дырах во Вселенной, о «прелестных», «ароматных» и «цветных» частицах — кварках, о космических мирах, спрятанных внутри частиц, о пустоте, которая оказывается не пустотой, а материальной субстанцией, о квантах пространства и квантах времени, о гипотетических монополях и антивеществе. Для широкого круга читателей.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.