Вселенная Стивена Хокинга - [43]
Такая картина Вселенной – горячей при рождении и остывавшей по мере расширения – согласуется со всеми имеющимися на данный момент наблюдательными данными. Тем не менее она оставляет без ответа ряд важных вопросов[31].
Почему ранняя Вселенная была такой горячей?
Почему Вселенная столь однородна на больших масштабах? Почему она выглядит одинаковой в любой точке пространства и в любом направлении? А в частности, почему температура микроволнового реликтового излучения почти одинакова во всех направлениях? Это чем-то напоминает экзамен в университете. Если все студенты дают абсолютно одинаковые ответы, то можете быть совершенно уверены: они успели договориться об этом заранее. Но в описанной выше модели с момента Большого взрыва прошло недостаточно времени, чтобы свет успел дойти из одной удаленной области до другой, даже если в эпоху ранней Вселенной эти области находились совсем близко друг к другу. По теории относительности, если свет не успевает пройти из одной области в другую, то никакой другой информации это также не под силу. Значит, температура в разных областях ранней Вселенной никак не могла достичь одного уровня, если только по некой неясной причине она не была одинаковой изначально.
Почему Вселенная начала быть и расширяться со скоростью, настолько близкой к критической – балансирующей на грани между моделями с последующим сжатием и с бесконечным расширением, – что даже сейчас, спустя десять миллиардов лет, расширение происходит почти с той же стремительностью? Если бы через секунду после Большого взрыва скорость расширения Вселенной была всего на одну стоквадриллионную долю меньше, то Вселенная сжалась бы, не успев разрастись до современного размера.
Хотя Вселенная весьма однородна на больших масштабах, в ней есть локальные неоднородности вроде звезд и галактик. Считается, что они образовались из-за небольших расхождений по плотности между разными областями в ранней Вселенной. Но какова природа этих флуктуаций плотности?
Общая теория относительности сама по себе не может объяснить этих парадоксов и дать ответы на эти вопросы – поскольку постулирует, что Вселенная родилась из вещества с бесконечной плотностью в сингулярности Большого взрыва. В условиях сингулярности ОТО и все прочие законы физики не работают: никому не под силу предсказать, что таит или сулит такой объект. Как объяснялось выше, Большой взрыв и все события до него можно просто-напросто выбросить из теории, поскольку они совершенно никак не влияют на то, что мы наблюдаем сейчас. Стало быть, пространство-время должно иметь границу – начало в точке Большого взрыва.
Похоже, наука сформулировала набор законов природы, которые – насколько позволяет принцип неопределенности – определяют эволюцию Вселенной со временем при условии, что нам известны ее параметры в любой выбранный момент времени. Эти законы могли быть первоначально установлены Богом, но похоже, что сразу после этого Бог предоставил Вселенную саму себе, и она продолжила развиваться по ниспосланным Творцом директивам, безо всякого Его вмешательства. Но как он выбрал начальное состояние и конфигурацию Вселенной? Каковы были «граничные условия» в начале времен?
Ответить на этот вопрос можно так: Бог выбрал начальную конфигурацию Вселенной, руководствуясь соображениями, которые нам не дано постичь. Это, без сомнения, вполне по силам всемогущему существу… Но если Бог дал жизнь Вселенной столь непонятным образом, то почему Он позволил ей эволюционировать в соответствии с законами, которые мы смогли понять? Вся история науки представляет собой постепенное осознание того, что ничто в мире не происходит произвольным образом и что происходящие события отражают некий глубинный строй, который мог быть установлен Богом – но мог и не быть. Вполне естественно предположить, что этот строй касается не только законов, но и условий на границе пространства-времени, которые определяют начальное состояние Вселенной. Может существовать множество моделей Вселенной с разными начальными условиями, и все они будут подчиняться физическим законам. Но должен быть некий принцип, который указывает на единственное начальное состояние, а следовательно, на одну модель нашей Вселенной.
Одна из возможностей – это так называемые хаотичные граничные условия. В этом случае неявно подразумевается, что либо Вселенная бесконечна в пространстве, либо вселенных бесконечно много. В случае хаотичных граничных условий вероятность обнаружить любую конкретную область в пространстве в любой конкретной конфигурации сразу же после Большого взрыва в некотором смысле такая же, как и вероятность обнаружить ее в любой другой конфигурации: начальное состояние Вселенной выбирается совершенно случайным образом. Это означает, что ранняя Вселенная, скорее всего, была хаотична и неоднородна, потому что таких конфигураций Вселенной намного больше, чем однородных и упорядоченных. (Если все конфигурации равновероятны, то вернее всего, эволюция Вселенной началась с хаотичного и неупорядоченного состояния, просто потому, что такие состояния сильно преобладают.) Непонятно, как такие хаотичные начальные условия могли дать начало столь однородной и упорядоченной на больших масштабах вселенной – такой, какова наша Вселенная в настоящее время. Можно было бы ожидать, что флуктуации плотности в такой модели привели бы к образованию куда большего числа первичных черных дыр, чем допускает верхний предел, заданный наблюдениями гамма-фона.
Стивен Хокинг, величайший ученый современности, изменил наш мир. Его уход – огромная потеря для человечества. В своей финальной книге, над которой Стивен Хокинг работал практически до самого конца, великий физик делится с нами своим отношением к жизни, цивилизации, времени, Богу, к глобальным вещам, волнующим каждого из нас.
Книга представляет собой сборник эссе выдающегося физика современности Стивена Хокинга, написанных им в период с 1976 по 1992 год. Это и автобиографические очерки, и размышления автора о философии науки, о происхождении Вселенной и ее дальнейшей судьбе.
Эта книга объединила семь лекций всемирно знаменитого ученого, посвященных происхождению Вселенной и представлениям о ней - от Большого Взрыва до черных дыр и теории струн. А главное, тому, как создать на основе частных физических теорий великую объединенную теорию всего.
По Вселенной на астероиде – не может быть! Может! – не сомневаются знаменитый астрофизик Стивен Хокинг (интервью с ним читайте здесь), его дочь Люси и бывший аспирант, а ныне популяризатор науки Кристоф Гальфар, которые в сентябре 2007 года представили свою первую книгу для детей о приключениях Джорджа и его друзей во Вселенной.В этой живой и весёлой книге они рассказали о фантастически интересных предметах – черных дырах, квазарах, астероидах, галактиках и параллельных вселенных – детям. Авторы особо подчеркивают, что хотели «представить современный взгляд на космологию от Большого взрыва до настоящего времени без какой бы то ни было магии».
Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.
И вот – долгожданная вторая часть о приключениях Джорджа в космосе – «Джордж и сокровища Вселенной». Все те, кто прочитал научно-приключенческую повесть Стивена и Люси Хокинг «Джордж и тайны Вселенной», с нетерпением ждали продолжения: что-то станется с бесстрашными и любознательными героями дальше? Какие загадки предстоит им решить? Что нового узнать? Куда подевался тщеславный злодей доктор Линн?Во второй книге трилогии, к неразлучным друзьям Джорджу и Анни присоединяется еще один мальчик – компьютерный гений Эммет.
Наиболее полная на сегодняшний день биография знаменитого генерального секретаря Коминтерна, деятеля болгарского и международного коммунистического и рабочего движения, национального лидера послевоенной Болгарии Георгия Димитрова (1882–1949). Для воссоздания жизненного пути героя автор использовал обширный корпус документальных источников, научных исследований и ранее недоступных архивных материалов, в том числе его не публиковавшийся на русском языке дневник (1933–1949). В биографии Димитрова оставили глубокий и драматичный отпечаток крупнейшие события и явления первой половины XX века — войны, революции, массовые народные движения, победа социализма в СССР, борьба с фашизмом, новаторские социальные проекты, раздел мира на сферы влияния.
В первой части книги «Дедюхино» рассказывается о жителях Никольщины, одного из районов исчезнувшего в середине XX века рабочего поселка. Адресована широкому кругу читателей.
Книга «Школа штурмующих небо» — это документальный очерк о пятидесятилетнем пути Ейского военного училища. Ее страницы прежде всего посвящены младшему поколению воинов-авиаторов и всем тем, кто любит небо. В ней рассказывается о том, как военные летные кадры совершенствуют свое мастерство, готовятся с достоинством и честью защищать любимую Родину, завоевания Великого Октября.
Автор книги Герой Советского Союза, заслуженный мастер спорта СССР Евгений Николаевич Андреев рассказывает о рабочих буднях испытателей парашютов. Вместе с автором читатель «совершит» немало разнообразных прыжков с парашютом, не раз окажется в сложных ситуациях.
Из этой книги вы узнаете о главных событиях из жизни К. Э. Циолковского, о его юности и начале научной работы, о его преподавании в школе.
Со времен Макиавелли образ политика в сознании общества ассоциируется с лицемерием, жестокостью и беспринципностью в борьбе за власть и ее сохранение. Пример Вацлава Гавела доказывает, что авторитетным политиком способен быть человек иного типа – интеллектуал, проповедующий нравственное сопротивление злу и «жизнь в правде». Писатель и драматург, Гавел стал лидером бескровной революции, последним президентом Чехословакии и первым независимой Чехии. Следуя формуле своего героя «Нет жизни вне истории и истории вне жизни», Иван Беляев написал биографию Гавела, каждое событие в жизни которого вплетено в культурный и политический контекст всего XX столетия.
У вас в руках сборник рейтовских лекций Стивена Хокинга о черных дырах, прочитанных на BBC Radio 4. Трудно вообразить, кто мог бы рассказать об одних из самых загадочных космических объектов интереснее и проще, чем человек, сделавший космологию популярной наукой и отдавший многие годы изучению связанных с черными дырами эффектов. Те вопросы, которые остались без ответа, растолковал Дэвид Шукман, научный редактор BBC. Рейтовские лекции, или лекции имени лорда Джона Рейта, первого генерального директора BBC, просветителя и популяризатора, – цикл научно-популярных записей.
Фестиваль науки Starmus впервые прошел в 2011 году, и с тех пор стало традицией участие в нем ведущих ученых, знаменитостей в области космонавтики и музыки, которых объединяет страсть к популяризации знания о Земле и космосе. Учредитель фестиваля и астрофизик Гарик Исраелян создал экспертный совет, в который вошли такие замечательные личности, как астрофизик и рок-музыкант Брайан Мэй, эволюционный биолог Ричард Докинз, первооткрыватель микроволнового излучения Роберт Вильсон, теоретический физик Стивен Хокинг, космонавт Алексей Леонов, химик и лауреат Нобелевской премии Харольд Крото и другие. В этой книге собраны лекции ученых, которые многие годы работали над тем, чтобы воссоздать прошлое вселенной и представить ее структуру.
Под этой обложкой – полный текст научно-популярного бестселлера. В главе, ранее не публиковавшейся на русском языке, автор рассуждает о возможности путешествий во времени. Текст сопровождают примечания и уточнения, сообщающие о достижениях современных космологов и астрономов.
Чтобы дать верные ответы на фундаментальные вопросы о Вселенной, понадобились века и смелость нескольких ученых. Николай Коперник в трактате «О вращении небесных сфер», Галилео Галилей в «Диалоге о двух главнейших системах мира», Иоганн Кеплер в «Гармонии мира», Исаак Ньютон в «Математических началах натуральной философии» и Альберт Эйнштейн в своих многочисленных статьях о принципе относительности открыли современникам глаза на то, как устроен небесный свод и что происходит за пределами видимости телескопа.