Вселенная погибнет от холода. Больцман. Термодинамика и энтропия - [23]

Шрифт
Интервал

Больцман пошел дальше и наметил свою следующую статью, утверждая, что "на основе относительных величин различных распределений состояний можно даже вычислить их вероятности". Этот тезис он развил позже, что обозначило начало статистической физики, где множества молекул берутся в целом и сравниваются не с одним и тем же газом в другие моменты, а с другими возможными конфигурациями этого газа.

Сделав введение в проблему и мастерски сформулировав свой ответ, Больцман перешел в наступление. Для этого он взял идеальный газ (газ, образованный идеальными и абсолютно упругими сферами) в неоднородном состоянии: например, в котором плотность в правой части выше, чем в левой. Он утверждал, что если позволить газу эволюционировать без внешнего воздействия, то молекулы распределятся равномерно по всему сосуду, и разница в плотности исчезнет. Как показано на следующем рисунке, газ со всеми его молекулами, собранными в углу, затем займет весь сосуд, и по-другому быть не может.


Затем Больцман поставил Лошмидта в затруднительное положение, утверждая, что, по словам последнего, если инвертировать скорость молекул в конечном положении, то газ спонтанно вернется в свое неоднородное состояние. Однако Больцман признавал невозможность доказательства того, что сферы должны перемешиваться равномерно. Но он продолжал:


"На самом деле это следствие из теории вероятностей, поскольку любое неравномерное распределение состояний, каким бы маловероятным оно ни было, нельзя считать абсолютно невозможным. (...) Действительно, ясно, что любое отдельное равномерное распределение, которое может возникнуть через некоторый интервал на основе какого-то отдельного начального состояния, настолько же невероятно, как и любое отдельное неравномерное распределение: в лотерее любое отдельное множество из пяти чисел так же невероятно, как и множество 1, 2, 3, 4, 5. Распределение состояний в итоге будет равномерным через некоторое время, только потому, что существует намного больше равномерных распределений, чем неравномерных".


Этот последний абзац сложноват для понимания и, вероятно, требует разъяснения. Сначала Больцман утверждал: любое равномерное распределение так же невероятно, как и равномерное, что может оказаться запутанным; тогда почему же газы стремятся к равномерному распределению? Ключ здесь в слове "отдельное". Если рассматривать все возможные состояния энергии каждой молекулы газа, вероятность того, что газ будет находиться именно в настоящей конфигурации, очень мала, поскольку для этого потребовалось бы, чтобы все и каждая молекулы имели в точности одну и ту же скорость в настоящий момент. Однако когда наблюдатель смотрит на систему с макроскопической точки зрения, он не знает скорости отдельных молекул, он знает только крупномасштабные свойства газа. Любое распределение, которое породит одно и то же в крупном масштабе, будет неразличимо. Больцман настаивает, что существует намного большее число сочетаний, соответствующих макроскопически однородным газам, чем неоднородным. Как показано на рисунке, различные отдельные распределения порождают одни и те же макроскопические свойства.


Итак, второе начало можно рассматривать как утверждение, в котором речь идет в большей степени не о газах самих по себе, а о макроскопической информации, которая у нас о них имеется. Больцман говорил об этом следующим образом:


"Поскольку существует бесконечно больше распределений равномерных состояний, чем неравномерных, эти последние чрезвычайно невероятны и могут считаться невозможными на практике; точно так же можно считать невозможным, что если сначала перемешать кислород с азотом в контейнере, через месяц мы найдем химически чистый кислород в нижней части, а азот — в верхней части, хотя согласно теории вероятностей, это всего лишь невероятно, а не невозможно. [...] Если это сведение второго начала к области вероятностей делает сомнительным его применение ко всей Вселенной, следует иметь в виду, что законы теории вероятностей подтверждаются всеми экспериментами, которые осуществляются в лаборатории".


В конце статьи Больцман признал ценность возражения Лошмидта, хотя, возможно, в форме, которая не понравилась его другу: "Как бы то ни было, теорема Лошмидта представляется мне имеющей максимальную важность, поскольку она показывает, насколько бесконечно связано второе начало с теорией вероятностей, в то время как первое начало независимо от нее".

Последний комментарий в ответе Лошмидту порождал многочисленные дебаты в течение XX века, которые продолжаются и сегодня. Так, в середине статьи Больцман отметил:


"Упомяну здесь одно особенное следствие из теоремы Лошмидта: тот факт, что при представлении состояния мира в бесконечно далеком прошлом мы бы верно предположили, и это очень вероятно, что находимся в состоянии, когда все различия в температуре уже исчезли, то же самое произошло бы, если бы мы предположили состояние Вселенной в далеком будущем".


Этот на ходу брошенный комментарий Больцмана представил, и представляет, многочисленные сложности для физического сообщества относительно оси времени, то есть направления от прошлого к будущему. Несмотря на то что далее мы рассмотрим это более детально, стоит сделать небольшое замечание: Больцман указывал на то, что второе начало должно быть настолько же применимо к прошлому, как и к будущему, поскольку оно ограничивается утверждением, что тела имеют тенденцию занимать более вероятное состояние. Если обратиться к далекому прошлому и задаться вопросом, каково самое вероятное состояние, в котором оно может находиться, очевидный ответ — "состояние высокой энтропии", что означает состояние высокой однородности, тепловую смерть. Действительно, проблема намного больше, чем кажется: вычисление вероятностей указывает на то, что намного более вероятно, что прошлое, которое мы принимаем как должное, есть иллюзия, и что субъект (то есть человек, получающий опыт) — не более чем статистическая флуктуация во Вселенной в состоянии тепловой смерти. На сегодняшний день было представлено несколько решений этого парадокса, и ни одно из них полностью не принято научным сообществом.


Еще от автора Эдуардо Арройо
Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.