Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [84]
Они не встретятся, пока на одной из ракет не включат двигатели, чтобы изменить направление движения и со временем догнать другую ракету. Приняв именно такой план действий, вы можете наблюдать за происходящим с борта второй ракеты – той, которая двигатели не включает. Поскольку вы оказались на борту, относительно вас эта ракета неподвижна, и мы поэтому переименуем ее в (межзвездный) космодром (рис. 5.19). А пункт назначения первой ракеты переименуем в базу (удаленную базу – какой-нибудь форпост, куда нужно доставить припасы). Итак, мимо окна вашего кабинета на космодроме пролетает ракета со скоростью 12/13 (около 92,3 %) скорости света, направляясь к базе, удаленной на 12 световых лет. У цели ракета окажется через 13 «космодромных» лет – в момент T + 13 лет, если пользоваться языком прогулки 2. Вы, правда, знаете, что из-за движения ракеты время на ней течет медленнее в 13/5 раз (таков гамма-фактор для выбранной скорости), и к исходу ваших 13 лет на борту пройдет всего 5.
Для командира ракеты эти 5 лет получаются другим способом. С его точки зрения, база надвигается на него со скоростью 12/13 скорости света, а расстояние до нее не 12 световых лет, а в те же 13/5 раз меньше: 12: 13/5 ≈ 4,6 светового года, откуда и получается, что встреча с базой состоится через 5 лет. Но дальше намечается проблема: по мнению командира ракеты, в течение всех этих пяти лет космодром удаляется от него с той же скоростью 12/13 скорости света, а потому время там течет медленнее, чем на ракете, в те же 13/5 раз, и к моменту встречи ракеты с базой у вас на космодроме пройдет 5: 13/5 = 25/13 ≈ 1,9 года. Меньше двух, а не 13 лет! Потом ракета повернет, снова будет лететь со скоростью 12/13 скорости света, и за время ее обратного полета на космодроме пройдет еще 1,9 года с точки зрения экипажа. Верно? Да. Ракета достигнет базы в момент T + 1,9 + 1,9 лет, т. е. меньше чем через четыре года после старта? Нет.
Рис. 5.19. Парадокс близнецов. Сверху: две ракеты разлетаются в разные стороны, одна из них потом разворачивается и догоняет другую ракету. Снизу: то же самое с точки зрения одной из ракет. Для ее экипажа она неподвижна и, чтобы это подчеркнуть, нарисована в виде летающего космодрома. Вторая ракета пролетает мимо космодрома, потом разворачивается и летит обратно
Долетев до базы, ракета выполняет поворот (или разворот) на 180° вокруг базы и начинает движение обратно к космодрому. Это означает переход к другой скорости движения, а значит, картины мира в ракете до и после поворота требуют согласования: это картины мира двух различных наблюдателей. Переход между ними осуществляется математически с помощью гиперболического поворота в пространстве-времени. Слово «гиперболический» сейчас очень пригодится, чтобы отличать эти «математические» повороты в пространстве-времени от настоящего поворота ракеты в пространстве. В результате гиперболического поворота меняется представление об одновременности (мы говорили ранее в этой главе, что понятие одновременности зависит от движения). Сразу после поворота командир ракеты определяет, какой момент времени на космодроме отвечает его текущему «сейчас»: T + 24,1 года. И поскольку с его точки зрения до момента по часам на космодроме остается 5: 13/5 ≈ 1,9 года, он вычисляет время встречи по космодромным часам как T + 24,1 + 1,9 = T + 26 лет. Это ответ для времени ожидания на космодроме на взгляд экипажа: 26 лет. На космодроме, конечно, никогда не сомневались в том, что ракета вернется в момент T + 13 + 13 = T + 26 лет.
Все сходится, и при этом вся магия – в повороте ракеты. За день до поворота момент «сейчас» на ракете (T + 5 лет без одного дня) отвечал с точки зрения экипажа моменту T + 1,9 года на космодроме. Через день после поворота «сейчас» на ракете (в общем, те же T + 5 лет) означает T + 24,1 года на космодроме. Во время поворота что-то происходит с временем; но именно тогда, очевидно, ракета включает двигатели, т. е. испытывает ускорение. Пока ракета двигалась с ускорением, время в ней текло так медленно по сравнению с космодромом, что там прошло 22 с лишним года. Включение двигателей замедляет время, и тот из близнецов, кто этого не делал, постарел сильнее. (Эта тема развивается на следующей прогулке, и дело там не ограничится близнецами.)
Нечто странное видно из ускоряющейся ракеты. Пока ракета, на которой мы планировали посетить достопримечательности от Альфы Центавра до Андромеды, разгоняется с постоянным «ощущаемым» ускорением, мир за бортом, на взгляд экипажа, своеобразным образом перекашивается. Настоящее место эффектам, которые они видят, – на следующей прогулке, но в качестве разминки перед ней мы обсудим эти странности уже здесь.
Наблюдатели на ракете движутся, конечно, прямолинейно, но не равномерно, a вся схема специальной теории относительности относится к равномерному движению. Я втихомолку игнорировал это усложнение, но мои вычисления и высказывания о картине мира глазами космонавтов обоснованы благодаря вот какому рассуждению. Представим себе, что один из космонавтов выходит из ракеты, не будучи никак к ней привязанным; поскольку у него нет двигателя, он немедленно станет наблюдателем, двигающимся равномерно и прямолинейно – со скоростью, которой ракета достигла на момент его выхода. Конечно, он будет отставать от ракеты, но в течение короткого времени его картина мира будет слабо отличаться от картины мира его товарищей на борту

Новая книга профессора Московского университета Г. А. Федорова-Давыдова написана в научно-популярной форме, ярко и увлекательно. Она представляет собой очерки истории денежного дела в античных государствах Средиземноморья, средневековой Западной Европе, странах Востока, на Руси (от первых «златников» и «сребреников» князя Владимира до реформ Петра 1)„ рассказывается здесь также о монетах нового времени; специальный раздел посвящен началу советской монетной чеканки. Автор показывает, что монеты являются интересным и своеобразным историческим источником.

Книга в легкой и доступной форме рассказывает об истории электротехники и немного касается самого начального этапа радиотехники. Автор дает общую картину развития знаний об электричестве, применения этих знаний в промышленности и технике. В книге содержится огромное количество материала, рисующего как древнейшие времена, так и современность с её проблемами науки и техники. В русской литературе — это первая попытка дать читателю систематическое изложение накопленных в течение веков фактов, которые представляют грандиозный путь развития учения об электричестве и его практического применения.

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.

Сорняки — самые древние и злостные враги хлебороба. Зеленым пожаром охвачены в настоящее время все земледельческие районы земного шара. В книге рассказывается об истории и удивительной жизненной силе сорных растений, об ожесточенной борьбе земледельца с сорняками и путях победы над грозным противником. - Книга в увлекательной и популярной форме рассказывает о борьбе с самым древним и злостным врагом хлеборобов — сорняками (первое издание — 1981 г). В ней даны сведения об истории и биологии сорняков, об их взаимоотношениях с культурными растениями.

Пчелы гораздо древнее, чем люди: когда 4–5 миллионов лет назад предшественники Homo sapiens встретились с медоносными пчелами, те жили на Земле уже около 5 миллионов лет. Пчелы фигурируют в мифах и легендах Древних Египта, Рима и Греции, Индии и Скандинавии, стран Центральной Америки и Европы. От повседневной работы этих трудолюбивых опылителей зависит жизнь животных и людей. Международная организация The Earthwatch Institute официально объявила пчел самыми важными существами на планете, их вымирание будет означать конец человечества.

Многие традиционные советы о том, как преуспеть в жизни, логичны, обоснованны… и откровенно ошибочны. В своей книге автор собрал невероятные научные факты, объясняющие, от чего на самом деле зависит успех и, что самое главное, как нам с вами его достичь. Для широкого круга читателей.