Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [3]

Шрифт
Интервал

С нашим современным умением пользоваться законами природы и представлением, что они действуют «через причины», довольно трудно принять античную точку зрения, искавшую закономерности в математическом мире, но не предполагавшую их неотвратимого и однозначного действия в мире физическом. Согласно Аристотелю, движение вообще невозможно описывать математически и изучение природы – «физика» – может строиться только качественно; сама идея приписывать качествам какую-то численную меру появилась только в Средние века. Но что же и потом довольно долго мешало разглядеть, что стрела летит по математически строгой траектории, называемой параболой? Среди прочего – тот простой факт, что стрела не летит по параболе. Сопротивление воздуха «портит» параболу и превращает ее во что-то сложное – почти буквально «смешанное». В реально наблюдаемых нами процессах многие факторы путаются. Чтобы сформулировать принципы, которыми управляется происходящее, часто (да почти всегда) требуется отделить одно от другого (и от третьего, и от четвертого – влияний разного рода, как правило, много). В целом ряде сложных явлений мы сумели разобраться, выделив в них несколько факторов, каждый из которых действует относительно просто, и поняв, как эти разные факторы влияют друг на друга. Ключевая идея, таким образом, состоит в том, что некоторый главный эффект может до некоторой степени «портиться» всяческими дополнительными влияниями. Но, чтобы увидеть главный эффект во всей его полноте и строгости, иногда требуется проделать работу по реальному или воображаемому устранению этих влияний. Идеальные проявления законов природы могут поэтому оказаться абстракцией, но такие абстракции доказали свою полезность в практическом плане. Да, тело, запущенное под углом к горизонту, не летит по математически строгой параболе; но любой артиллерийский офицер эпохи Наполеоновских войн сказал бы, что пользы от «нереализуемой» параболы все равно много: она математически точна и проста, и, хотя она дает лишь некоторое приближение к реальности, для учета сопротивления воздуха в разных обстоятельствах и других эффектов имеются таблицы поправок при прицеливании. Такой подход к описанию реальности (заметно отличный от аристотелевского) колоссально расширил наше понимание Вселенной[2].

*****

Открытие Солнечной системы. Впечатляющий шаг к ключевой идее, что законы мироустройства можно извлечь из наблюдений, был сделан при рассмотрении «идеального», как все еще казалось тогда, мира небесных тел и потребовал точных наблюдений планет на небе. Их выполнил в последней трети XVI в. Тихо Браге, происходивший, как бы теперь сказали, «из олигархов», что (нисколько не умаляя его приверженности точным и систематическим наблюдениям) способствовало наличию у него лучших из имевшихся тогда – до изобретения телескопа! – приборов. К составленным им таблицам с данными наблюдений в конце концов получил доступ сильно желавший этого Иоганн Кеплер – человек определенно не аристократического происхождения, упорство и гениальность которого в итоге превратили колонки чисел в математические кривые. Орбиты планет, как смог усмотреть из таблиц Кеплер, представляли собой эллипсы, причем Солнце располагалось вовсе не в центре, а несколько в стороне, в одном из двух фокусов (рис. 1.1); картина не очень симметричная, потому что во втором фокусе ничего нет.


Рис. 1.1. Эллипс интереснее окружности. Он определен тем, что сумма расстояний от каждой его точки до двух фиксированных точек (фокусов) постоянна. Поэтому нарисовать эллипс проще всего, закрепив в этих точках концы нитки и держа карандаш так, чтобы нитка всегда была натянута. Показано расстояние 2a между двумя самыми удаленными друг от друга точками эллипса. Его половина, a, называется большой полуосью


Космический телескоп, запущенный в 2009 г. и вооруженный самыми современными технологиями для поиска планет у других звезд (иначе говоря, экзопланет), получил имя «Кеплер». При этом в мире Иоганна Кеплера звезды были огнями на самой дальней из твердых сфер – какие уж там планеты! – и даже в том, что касается Солнечной системы, он и не подозревал о существовании Урана и Нептуна. И уж тем более там не было места рукотворным изделиям, отправленным путешествовать теми же путями, что планеты. Подходящее ли это название для космического телескопа?

Задача, которую решал Кеплер в первые годы XVII в., – найти форму (и относительные размеры) орбиты каждой из планет – осложнялась тем, что наблюдения за движущимися планетами велись с Земли, которая сама тоже двигалась каким-то образом (как одна из планет, должен был рассуждать Кеплер; но как именно? Заранее неизвестное движение Земли требовалось некоторым образом «вычесть» из результатов наблюдений). В этом смысле таблицы Тихо Браге носили несколько «внутренний» характер, как если бы Аристотелю были доступны только видео летящей стрелы, снятые с других стрел. И даже хуже того: наблюдаемые «положения» планет – это не их положения в пространстве, пусть и относительно Земли, а только направления на эти их положения в пространстве. И на небе они ведут себя не самым регулярным образом, время от времени меняя направление своего перемещения на фоне звезд (рис. 1.2). Ответ же, данный Кеплером на вопрос о движении вокруг Солнца всех планет, включая и Землю, носит совершенно «внешний» характер: мы вслед за Кеплером рисуем эллипсы так, как будто видим Солнечную систему со стороны. По сей день ни один наблюдатель, ни один беспилотный космический корабль не смотрел на Солнечную систему извне, чтобы в течение достаточно долгого времени – скажем, пары десятков лет –


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.