Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [235]

Шрифт
Интервал

Говоря о копенгагенской интерпретации квантовой механики, я допускаю вольность, несколько произвольно объединяя ее с тем, что также известно как «стандартная» интерпретация, в значительной степени восходящая к фон Нейману. Различия между ними и собственно взгляды самого Бора анализируются, например, в [68]. Тщательное рассмотрение оригинальной работы ЭПР и связанной с ней переписки Эйнштейна доступно в [70]. Теоремы Белла обсуждаются во многих местах, включая книги [90, 96, 76], а также [94]. Обзор экспериментов по исключению различных «лазеек», посредством которых нарушение неравенств Белла можно было бы согласовать с локальным реализмом, и ссылки на оригинальные работы приведены в [79]. Интерпретации квантовой механики – неисчерпаемая тема, стоит только один раз выбраться за рамки традиционной/копенгагенской, поэтому сюжеты, которые я выбрал для обсуждения, никак не претендуют на полноту. (Сергей Нечаев не одобряет мой выбор интерпретаций, что не в последнюю очередь свидетельствует о мозаичности всей «интерпретационной картины».) Кроме того, я полностью обошел молчанием теорему Глисона, теорему Кохена – Спекера и теорему ПБР (Пьюзи, Баррет, Рудольф), как и ряд других вопросов, быстро уводящих в разветвления, конца которым не предвидится; я прошу прощения у тех, кто считает, что любая из этих теорем так же важна для понимания квантовой механики, как и теоремы Белла. Источник цитаты Белла о бомовской механике – статья [45]. Каким образом постулируемое поведение бомовских точечных частиц приводит к наблюдаемым квантово-механическим эффектам, рассматривается в работах [97] и [98], а также в книге того же автора [96]. В книге, кроме того, обсуждается ряд проблем квантовой механики, включая измерения и локальность, а также несколько интерпретаций: копенгагенская, бомовская, ГРВ и многомировая. Основательная квантовая теория из первых рук – предмет книги [76]; мне пригодилось также изложение [80]. Подход ГРВ ясно изложен (с участием одного из авторов исходной идеи) в [74], а также, несколько более критически, в книге [90]. Цитата Зурека взята из статьи [112].

За исключением «основательных» (декогерирующих) историй, я почти совсем не обсуждал декогеренцию и совсем не обсуждал возникновение классического мира из квантового. Литература здесь весьма обширна, сошлюсь только на один очень энергичный обзор [106] и еще один, содержащий большее число подробностей и к тому же обновленный весной 2020 г., что позволяет найти там большинство ключевых ссылок: [43]. Отдельную большую тему, целиком оставшуюся в стороне, составляет интеграл по траекториям – впечатляющее изобретение Фейнмана, выросшее из сделанного вскользь замечания Дирака.

Как оказалось, я обошелся без волн де Бройля и (почти) без «корпускулярно-волнового дуализма». О них говорится практически в любом изложении квантовой механики, поэтому я за них не переживаю. (За опыт с одиночными электронами, проходящими через два отверстия в экране, я тоже не переживаю – он обсуждается везде.) В продуманных изложениях обычно добавляют, что корпускулярно-волновой дуализм не означает, что квантово-механическая «частица» – это и частица, и волна; напротив, он означает, что она не есть ни частица, ни волна. Ну и хорошо.

Движение на прогулке 11

Наши возможности делать заключения о происходящем в мире основаны на наблюдении материальных последствий движения – наблюдении макроскопических кусков материи, изменивших или изменяющих свое положение. О внутренних свойствах квантовых объектов мы в состоянии судить благодаря запутыванию этих свойств с движением. «Непосредственного доступа» к ним у нас нет, и лучшее имеющееся объяснение квантового мира требует развития абстрактных понятий и строится в терминах ненаблюдаемых объектов – состояний (волновой функции). Описание движения при этом также в значительной мере растворяется в череде абстракций; понятия положения, количества движения (скорости) и энергии приобретают новый способ существования, не как числа, а как операторы – математические конструкции, выражающие собой готовность воздействовать на волновую функцию. Построенное с их использованием уравнение Шрёдингера описывает эволюцию волновой функции, где и предлагается искать ответы на вопросы, «что и куда движется». Ключевую роль в эволюции во времени берет на себя энергия в виде оператора, действующего на волновые функции. Одновременно с этим мир на фундаментальном уровне имеет вероятностную природу, и наблюдаемые в нем события – продукт действия законов, регулирующих случайность. Запутанность как особый вид согласованности между свойствами разнесенных в пространстве квантовых явлений позволяет «перемещать» волновую функцию с математической точностью, используя лишь короткие «классические» сообщения. Квантовая механика достигла грандиозных успехов, отвечая и на количественные, и на качественные вопросы о поведении и свойствах квантовых систем, но она в значительной мере оставляет нас в неведении относительно элементов реальности, поведение которых отражается в волновой функции.

Заключение


Рекомендуем почитать
Погода интересует всех

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.


Знание-сила, 2008 № 04 (970)

Ежемесячный научно-популярный и научно-художественный журнал.


Необычные изобретения. От Вселенной до атома

В этой книге говорится о том, что окружающий нас мир создан благодаря изобретательской деятельности природы и человека.Космос, Земля и сама Жизнь, многие произведения литературы, живописи, музыки и кинематографа, способы разрешения критических ситуаций – все это можно рассматривать, как изобретения.Автор показывает схожесть многих художественных и изобретательских методик. В книге рассказано о великих путешественниках, которые и стали великими благодаря своим изобретательским способностям.Книга основана на 25-ти летней работе автора в области создания и защиты интеллектуальной собственности, а также на лекциях и семинарах для школьников, студентов, изобретателей, патентных работников, руководителей и чиновников.Книга может быть полезна студентам вузов и школьникам старших классов для самостоятельного изучения основ изобретательской деятельности, а также может заинтересовать широкий круг читателей с нестандартным мышлением.


Кеплер. Движение планет. Танцы со звездами

Иоганн Кеплер был глубоко религиозным человеком. Благодаря своему научному подходу он создал образ мира, отражающего всю полноту Божественной гармонии. Сформулированные им три закона движения планет дали изящное математическое объяснение наблюдениям Тихо Браге, подтвердили выводы Коперника и проложили путь открытиям Ньютона. Как и многие другие первопроходцы в науке, Кеплер занимался дисциплинами, которые сейчас мы называем эзотерическими, в частности, астрологией. Со временем он стал знаменитым астрологом: к его услугам прибегали принцы и короли.


Знание-сила, 2000 № 09 (879)

Ежемесячный научно-популярный к научно-художественный журнал для молодежи.


Электрическая Вселенная. Невероятная, но подлинная история электричества

Блестящий популяризатор науки Дэвид Боданис умеет о самых сложных вещах писать увлекательно и просто. Его книги переведены на многие языки мира. Огромный интерес у российских читателей вызвала его «E=mc2». биография знаменитого эйнштейновского уравнения, выпущенная издательством «КоЛибри». «Электрическая Вселенная» — драматическая история электричества, в которой были свои победы и поражения, герои и негодяи. На страницах книги оживают истовый католик и открыватель электромагнетизма Майкл Фарадей, изобретатель и удачливый предприниматель Томас Эдисон, расчетливый делец Сэмюэл Морзе, благодаря которому появился телеграф, и один из создателей компьютеров, наивный мечтатель Алан Тьюринг.David BodanisELECTRIC UNIVERSEHow Electricity Switched on The Modern World© 2005 by David Bodanis.