Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [143]

Шрифт
Интервал

, удается в результате представить в виде простой формулы, которую нужно будет привести хотя бы для того, чтобы оценить ее простоту. Словами она описывается чуть дольше, но я попробую, только сначала оговорюсь, что речь идет об относительных вероятностях. «Настоящие» вероятности устроены так, что сумма по всем возможностям («исходам») равна единице (например, 1/3, что пойдет дождь, и 2/3, что не пойдет). Если за этим не следят, то, значит, вероятности относительные[171].

Относительная вероятность, что встреченная молекула имеет определенную энергию движения, зависит от этой энергии: чем больше энергия, тем вероятность меньше. В какой степени меньше? Распоряжается здесь, как оказалось, геометрическая прогрессия. Это такой вид зависимости, когда увеличение энергии на фиксированную величину уменьшает вероятность в определенное количество раз. Конечно, геометрические прогрессии могут и возрастать: например, для некоторых напитков действует (по крайней мере, одно время действовало) очень грубое, но все-таки правило: каждые дополнительные шесть лет выдержки увеличивают цену вдвое. Двенадцатилетний – в два раза дороже, чем шестилетний; восемнадцатилетний – еще в два раза дороже. Двадцатичетырехлетний – надеюсь, идея ясна; боюсь только, мы сильно отвлеклись от кофе. Для молекул вашего кофе в чашке убывающая геометрическая прогрессия выдает вероятности в зависимости от энергии; получаемая вероятность уменьшается в определенное число раз, если вы решили поинтересоваться энергией, которая больше предыдущей, скажем, на 5 миллиэлектронвольт, и еще в такое же число раз для энергии, большей еще на 5 миллиэлектронвольт. А вот в какое именно число раз, определяется температурой. При низких температурах – в большое число раз (вероятности быстро уменьшаются с ростом энергии), при высоких – не очень. Высокая температура, другими словами, означает не только большую среднюю энергию движения, но и большую «терпимость» к энергиям выше средней (более энергичных молекул не так уж и мало).

И я обещал формулу, которая все это выражает в очень малом числе букв. Мы спрашиваем, какова относительная вероятность встретить молекулу с энергией вблизи выбранного значения E.[172] Вот она (семь букв и шесть символов, хотя можно записать и короче, пятью буквами и двумя символами): exp(–E/(k>BT)). Конечно, T – это температура по абсолютной шкале (кельвины); кроме того, exp – это обозначение для участвующей здесь геометрической прогрессии, причем знак минус означает, что эта прогрессия убывающая: чем больше E, тем меньше вероятность. И еще здесь присутствует постоянная величина k>B, решающая небольшую техническую проблему. Мы измеряем температуру в градусах, а энергию – в чем-то еще (эргах, или джоулях, или миллиэлектронвольтах, или киловатт-часах), поэтому, поделив энергию E на температуру T, мы получим не «голое» число, а число с размерностью. Геометрическая же прогрессия умеет работать только с «голыми» числами, такими как –0,7. Чтобы они получились, надо «доделить» на постоянную k>B, которая специально для этого и придумана. Этот переводной множитель имеет фиксированное численное значение в зависимости от того, в каких единицах измеряются энергия и температура, и называется постоянной Больцмана.

Знание вероятностей, с которыми попадаются носители с любой заданной энергией, – это серьезное знание, открывающее немало возможностей: например, из него можно вывести, как именно молекулы в газе распределены по скоростям, да еще в зависимости от температуры. Получается, что среди легких молекул немало тех, которые летят в разы быстрее среднего; но скорости более тяжелых молекул в основном близки к средней. Это имеет последствия среди прочего для устройства атмосферы: высокие скорости молекул и атомов в верхних слоях атмосферы означают их расставание с Землей, как только им случится полететь в правильном направлении. Поскольку водород, будучи самым легким, и так в среднем летает быстрее всех, да еще его молекулы охотно приобретают скорость много выше средней, не стоит удивляться его отсутствию в атмосфере.

Совсем простое упражнение на применение найденных вероятностей – вычислить среднюю энергию молекулы. Вообще-то я уже проболтался, что должно получиться что-то вроде температуры, но вот и интересно посмотреть, что же именно. Найти среднее, имея дело с вероятностями, означает сложить все возможные результаты, умножив каждый на его вероятность. Если вы оказались в довольно примитивном казино, где подбрасывают монету и за выпадение орла вы получаете 45 рублей, а при выпадении решки отдаете 55, то в среднем за одно подбрасывание ваш выигрыш составляет 1/2 · 45 – 1/2 · 55 = –5, т. е. за одну попытку вы в среднем теряете пять рублей. Одна вторая, дважды встречающаяся в этом расчете, – это вероятности выпадения орла и решки. Но если монета «подкручена» таким образом, что в 2/3 случаев падает орлом, а в 1/3 случаев решкой, то в среднем за одно подбрасывание ваш выигрыш составит 2/3 · 45 – 1/3 · 55 = 35/3, т. е. 11 рублей, после того как вы отдадите копейки на благотворительность. В этой истории имеются две «ставки» (45 и –55) и соответствующие им вероятности (в последнем варианте 2/3 и 1/3); зная это, мы определяем


Рекомендуем почитать
Пять литров красного. Что необходимо знать о крови, ее болезнях и лечении

Гематолог-онколог Михаил Фоминых доступным языком рассказывает об анатомии и физиологии крови и кроветворных органов, наиболее часто встречающихся синдромах и заболеваниях системы крови, методах диагностики и лечения, о современной теории канцерогенеза, причинах развития онкологических заболеваний, развенчивает распространенные мифы о крови и ее болезнях. Эта книга содержит важные сведения, которые помогут вам более осознанно и уверенно общаться с врачами, однако ее цель – не только рассказать о возможностях диагностики и лечения гематологических заболеваний, но и расширить наши познания о крови – жизненно важной и необыкновенно интересной жидкой ткани организма.


Вирусы и эпидемии в истории мира. Прошлое, настоящее и будущее

С самого возникновения цивилизации человечество сосуществует с невидимыми и смертоносными врагами – вирусами. Оспа унесла больше жизней, чем все техногенные катастрофы и кровопролитнейшие войны XX века; желтая лихорадка не позволила Наполеону создать колониальную империю и едва не помешала строительству Панамского канала. Ученый-вирусолог, профессор Майкл Олдстоун, основываясь на свидетельствах современников ужасных эпидемий и ученых, «охотников за микробами», показывает, насколько глубоко влияние вирусов на жизнь человечества.


Неотрицаемое. Наш мир и теория эволюции

Билл Най — инженер, телеведущий популярных научных передач («Билл Най — научный парень») и директор Планетарного общества, занимающегося исследованиями в области астрономии и освоения космоса, а также популяризации науки. В своей книги об эволюции он увлекательно, с юмором, рассказывает о происхождении жизни, появлении новых видов, о дарвиновской теории и свидетельствах ее достоверности, которые мы можем найти в окружающей нас жизни, а также о последних исследованиях в медицине, биологии и генной инженерии.


Клеопатра

Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.


Ринг «быков» и «медведей»

«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.