Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [14]

Шрифт
Интервал

(например, каким должно быть x, чтобы выполнялось равенство x>2 = 1). До конца этого абзаца будем считать, что неизвестное – это число или числа, «любые» или из какого-то класса (например, иногда бывают интересны целые числа или, скажем, положительные; к уравнению всегда прилагается или подразумевается информация о том, в каком классе следует искать неизвестное). Кроме неизвестного или неизвестных, уравнения содержат нечто известное или считающееся известным. В буквальном смысле известными (известнее не бывает) являются конкретные числа, но очень часто в качестве известных фигурируют и буквы. Смысл букв в том, что их можно заменять числами по нашему выбору, но желательно делать это, когда уравнение уже решено. Получить решение «в буквах» всегда здорово, потому что решение относится тогда не к одному-единственному уравнению с конкретными числами, а к семейству уравнений. Хрестоматийный пример – квадратное уравнение, в котором одна буква x обозначает неизвестное, а две или три другие буквы считаются известными. Такое уравнение можно действительно решить «в буквах», т. е. в общем виде, но это редкая ситуация – например, с уравнением пятой степени (содержащим x>5 и более низкие степени) этого сделать нельзя, за исключением особых случаев, и приходится решать уравнение каждый раз заново с конкретными числами. Компьютер, как правило, неплохо справляется с уравнениями, в которых, кроме неизвестного, присутствуют только числа.

Но неизвестными могут быть не только числа, но и более сложные объекты – функции. Пример функции – поведение (зависимость от времени) какой-либо величины, скажем объема вашего вклада в банке. Данные о том, что каждый день вклад увеличивается на 0,001 своей величины, являются, по существу, уравнением, из которого можно найти это поведение – функцию времени – и, например, узнать размер вклада через 1000 дней. Часто (хотя и не всегда) в задачах про такое поведение нет «зернистости» в виде фиксированного отрезка времени («дня»): считается, что функция изменяется непрерывно, и формулировка уравнений к этому приспособлена (такие уравнения называются дифференциальными, что примерно означает «имеют дело с очень малыми изменениями»). Пример поведения – координаты тела, движущегося в пространстве; чтобы задать его траекторию, требуются три функции времени – по одной для каждой из координат. Когда тела движутся под действием каких-либо сил, эти функции не произвольны, а определяются уравнениями движения.


Рис. 1.7. Конические сечения


Уравнения, которые выражают законы природы, описывают точную (количественную) связь между какими-то величинами. Такие уравнения позволяют делать предсказания о поведении и свойствах изучаемых систем. Когда предполагается наличие в природе какой-либо связи, сопоставление предсказаний с наблюдениями служит для отбора тех уравнений, которые приводят к более точным предсказаниям. Несколько упрощая, можно сказать, что таким образом и формулируются работающие законы природы.

Конические сечения. Орбиты трех типов – эллипс (становящийся окружностью в частном случае), парабола и гипербола – объединены самим фактом того, что они и только они (кроме еще тривиального случая прямой линии) являются траекториями движения тел под действием притяжения одного центра. Они же объединены свойством совершенно иного типа: они и только они (и в специальном случае – прямая) возникают как пересечение плоскости и конуса. Конус – это поверхность, которая образуется, если свернуть в воронку лист бумаги, но с одним уточнением: математический конус продолжается по обе стороны от вершины, как видно уже на рис. 1.7a. Если теперь пересечь конус плоскостью, которая перпендикулярна оси симметрии, то в сечении получится окружность. Наклоняя плоскость, мы получаем в сечении разнообразные эллипсы – всё более вытянутые по мере того, как наклон плоскости увеличивается (рис. 1.7b), – до тех пор, пока наклон не станет таким же, как наклон образующей конуса. В этом случае (рис. 1.7c) в сечении получается парабола (в некотором роде, как мы говорили, эллипсов много, а парабола одна; здесь эта идея выражается в том, что парабола возникает при точно обозначенном угле). Наклоняя плоскость еще сильнее, получаем в сечении гиперболы – разные в зависимости от угла наклона (рис. 1.7d). Здесь требуется небольшое пояснение: каждая гипербола имеет две части, потому что плоскость задевает и верхнюю, и нижнюю половины конуса. Говоря о гиперболе как о траектории движения, имеют в виду одну ее половину (которую тогда тоже называют гиперболой).

Почему три вида кривых, и только они, оказались решением двух столь различных задач (задача Кеплера и конические сечения) – вопрос, который нельзя было не задать некоторое число раз за те триста с лишним лет, как этот факт выяснился (конические сечения как таковые были известны в Древней Греции). Эллипс, кроме того, геометрически полностью симметричен относительно двух фокусов, что видно уже из построения с ниткой, показанного на рис. 1.1; но в Солнечной системе нет никакой «нитки», которая указывала бы планете, как двигаться, а сила действует на планету всегда и только в сторону одного из фокусов. Как же геометрия возникает из закона тяготения? Самый простой ответ: она


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.