Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [13]

Шрифт
Интервал

Вот, собственно, и все, что может произойти: эллипсы, гиперболы или в крайнем случае параболы. Никаких более замысловатых траекторий, если речь идет о движении под действием притяжения к одному центру. Никаких, например, вариантов «по спирали падает на Солнце» – что не может не радовать обитателей одной из планет, обращающихся вокруг Солнца.

Кеплер абсолютно правильно прочитал многостраничные таблицы с числами, но нечеловеческие усилия и озарение, необходимые для такого прочтения, оказались больше никому не нужны: знание о том, какими могут быть орбиты, стало доступным и первокурснику. «Особенно замечательным, – писал Эйнштейн в статье, посвященной 200-летию кончины Ньютона, – должно было казаться выяснение того факта, что причина движения небесных тел тождественна столь привычной нам из повседневной жизни силе тяжести»[24]. И это не все. Принципы, один раз успешно выведенные из наблюдений (исторически – в ограниченной части Солнечной системы), наделили нас способностью делать выводы об устройстве мира и предсказывать поведение его частей далеко за пределами Солнечной системы. Мир Ньютона, полностью поглотивший мир Кеплера (и впитавший в себя относительность Галилея), постепенно распространялся на все шире приоткрывавшуюся Вселенную, не требуя для этого никаких изменений в своих фундаментальных положениях. Солнечная система отлично поддерживала единство теории и наблюдений: например, солнечные и лунные затмения известны на любой «мыслимый» момент времени в будущем или прошлом, и эти предсказания выполняются много точнее, чем расписание пригородных поездов. Простые принципы, заложенные в описание мира, работали, работали и работали; новые принципы не требовались. А если все, что происходит, случается в соответствии с законами движения, то все ли предсказуемо? Если знать положения и скорости всех тел в некоторый момент времени (упоминавшиеся уже начальные условия), то можно ли узнать будущее, просто решая уравнения движения? И вообще, в космосе все правда так просто? И есть ли границы, за которыми сформулированные законы теряют применимость?

Источник развития знания – несоответствия в имеющемся знании. Мощь ньютоновской картины мира, основанной на законах движения, определялась в том числе тем, что границы ее стали появляться в поле зрения не раньше чем через полтора столетия чрезвычайно плодотворного ее развития. Мы доберемся до этих границ гораздо быстрее, но еще до того нас ждут несколько шедевров ее использования, как в рукотворных ситуациях, когда требуется управлять движением ради достижения практических целей, так и для понимания устройства мира самого по себе.

*****

Движение как организация. Планеты, которые «бродят» по небу, а в действительности движутся по эллипсам, остаются в Солнечной системе, а не улетают прочь. Слово «система» подчеркивает привычку мыслить о нашем космическом окружении как о чем-то едином и заодно достаточно устойчивом. Причина такого положения дел в том, что существует вид движения под действием притяжения (да, эллипсы), участники которого не разбегаются в разные стороны. Открывая планеты у других звезд, мы тоже говорим о планетных системах и тоже, разумеется, рассуждаем в терминах эллипсов, по которым там летают планеты. На тех расстояниях, с которых мы их наблюдаем, ничего, кроме планет (и иногда значительных скоплений пыли), обнаружить не удается, но про свою Солнечную систему мы хорошо знаем, что в ней содержится множество разного, кроме планет; и все разнообразные ее обитатели летают вокруг Солнца тоже по эллипсам – в большей или меньшей мере искажаемым влиянием других обитателей. Я легко соглашусь с тем, что самое интересное из происходящего состоит как раз в этих взаимных влияниях, вызванных ими изменениях орбит и прочих драматических событиях, но тем не менее буду настаивать на том, что Солнечная система организована в нечто единое благодаря замкнутым траекториям. Ту же идею организации движущихся частей в нечто единое мы усматриваем в структурах большего масштаба: Солнечная система вместе с другими звездами, а также газом и пылью обращается вокруг центра галактики Млечный Путь, и все вместе они тоже составляют «систему»; другие галактики в дальнем космосе – основные структурные элементы, в терминах которых мы говорим об этом космосе. Движение в сочетании с законом притяжения – элемент организации и одновременно инструмент для проверки нашего понимания происходящего во Вселенной; ближе к дому это еще и возможность применить достигнутое понимание на практике. Движение как предмет для применения имеющихся знаний и способ получения новых – объект нашего внимания на следующих прогулках.

Добавления к прогулке 1

Об уравнениях. Волей-неволей нам предстоят прогулки в компании уравнений: их приходится упоминать и о них рассуждать, даже если сами они не присутствуют здесь во всей своей математической полноте. Нелишне сказать несколько слов об уравнениях вообще.

Если говорить одним словом, то уравнение – это задача. Сформулирована эта задача в виде двух различных математических выражений, соединенных знаком равенства. Как правило, требуется определить, каким должно быть неизвестное, чтобы это равенство


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.