Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [123]
Совсем не наши вселенные. Наполненность вселенной пылью не обязательно означает расширяющийся (или, быть может, сжимающийся) мир типа нашего. Гёдель – человек, внесший фундаментальный вклад в математическую логику и основания математики[146], – в 1949 г. на симпозиуме, посвященном дню рождения Эйнштейна, представил «вращающееся» решение уравнений Эйнштейна. Справедливости ради стоит оговориться, что это решение уравнений с космологической постоянной и в некотором роде даже статическое решение. Не очень естественным это решение делает не само по себе наличие космологической постоянной, а тот факт, что ее значение точно совпадает со средней плотностью энергии, распределенной в пыли. Тем не менее Гёдель считал, что его решение сообщает нечто новое о времени; сейчас оно поучительно в педагогически-тренировочных целях (и сообщает кое-что новое о времени).
Пыль распределена во вселенной Гёделя равномерно по всему пространству, а сама вселенная устроена одинаково в каждой своей точке, как и наша, но, в отличие от нашей, не одинакова по всем направлениям: вселенная Гёделя имеет одно выделенное направление. Его удобно называть вертикальным, хотя это чистая условность. Геометрия вдоль вертикального направления ничем не примечательна, а вот поперек этого направления – в «горизонтальной» плоскости – мир необычен. Каждый наблюдатель видит мир вокруг себя не разлетающимся прочь, как у нас, а вращающимся или, лучше сказать, скручивающимся: траектории любых двух частиц, которые свободно летят рядом вдоль вертикального направления, обвиваются одна вокруг другой. При этом с точки зрения каждого наблюдателя именно он находится на оси вращения мира, хотя никакой единой оси в действительности нет (подобно тому, как во вселенной Фридмана каждый наблюдатель видит себя в центре расширения, хотя никакого центра нет). Сама материя – пыль – «ничего для этого не делает». Просто таковы свойства метрики, найденной как решение уравнений Эйнштейна. Из-за этого «закручивания» свет, посланный наблюдателем в горизонтальной плоскости, не собирается уходить слишком далеко; по мере удаления от источника свет все более заворачивает в сторону, определяемую закручиванием, потом разворачивается и возвращается. На расстоянии, называемом гёделевским радиусом, свет поворачивает обратно к источнику. Таковы световые геодезические. На расстоянии, называемом гёделевским радиусом, свет поворачивает обратно, как показано на рис. 7.7. Свет же, который испущен не строго в горизонтальной плоскости, а под некоторым углом к ней, поворачивает еще раньше; а поскольку он одновременно распространяется без всяких приключений вдоль вертикального направления, в результате получается спираль. Спираль эта тем ýже, чем выше мы направим прожектор.
Рис. 7.7. Распространение света во вселенной Гёделя. Темной линией, выходящей из начала координат, показана траектория света, распространяю- щегося в горизонтальной плоскости, серая линия – траектория света, направленного под углом к этой плоскости. Показан также радиус Гёделя (более темная окружность).
Слева: картина в пространстве. Справа: вид сверху
Из-за такого поведения света каждый наблюдатель окружен оптическим горизонтом на расстоянии гёделевского радиуса от себя. Свет не может выйти за его пределы, а также не может прийти к наблюдателю извне, откуда-то снаружи этого радиуса. Зато каждый объект в пределах радиуса Гёделя виден с двух сторон: именно потому, что лучи света заворачивают, приблизившись к этому радиусу, он играет роль зеркала (довольно кривого в этом мире кривых лучей). Свет, излучаемый или отражаемый от разных сторон объекта, приходит к наблюдателю как «сразу», по относительно прямым траекториям, так и по сильно изогнутым траекториям, уходящим сначала в сторону оптического горизонта, а потом поворачивающим снова к наблюдателю. В результате с разной степенью искажения одновременно видны и обращенная к наблюдателю сторона объекта, и дальняя (рис. 7.8). По мере приближения объекта к гёделевскому радиусу два изображения все сильнее искажаются и затем сливаются. А если объект сдвинут вверх или вниз из горизонтальной плоскости, то, кроме «основного» изображения, появляются и те, которые произведены лучами, распространявшимися по спиралям, как показано на рис. 7.9.
Рис. 7.8. Два изображения одного и того же объекта, видимого с разных сторон. Для узнаваемости в качестве объекта выбран глобус, обращенный к наблюдателю Европой и Африкой. Он располагается в горизонтальной плоскости на расстоянии 0,8 (сверху) и 0,9 (снизу) гёделевского радиуса; сам глобус довольно большой: 0,1 гёделевского радиуса
Рис. 7.9. Ситуация как на рис. 7.8, но глобус удален от наблюдателя на 0,74 гёделевского радиуса и приподнят на чуть большее расстояние (0,8 гёделевского радиуса) над горизонтальной плоскостью. «Главное» изображение представляет собой искаженные и слившиеся изображения двух сторон глобуса, а повторные изображения возникают благодаря свету, прошедшему 1, 2, 3 и т. д. витка спирали. Они искажены сильнее, и их передний и задний виды не соединены
Гематолог-онколог Михаил Фоминых доступным языком рассказывает об анатомии и физиологии крови и кроветворных органов, наиболее часто встречающихся синдромах и заболеваниях системы крови, методах диагностики и лечения, о современной теории канцерогенеза, причинах развития онкологических заболеваний, развенчивает распространенные мифы о крови и ее болезнях. Эта книга содержит важные сведения, которые помогут вам более осознанно и уверенно общаться с врачами, однако ее цель – не только рассказать о возможностях диагностики и лечения гематологических заболеваний, но и расширить наши познания о крови – жизненно важной и необыкновенно интересной жидкой ткани организма.
С самого возникновения цивилизации человечество сосуществует с невидимыми и смертоносными врагами – вирусами. Оспа унесла больше жизней, чем все техногенные катастрофы и кровопролитнейшие войны XX века; желтая лихорадка не позволила Наполеону создать колониальную империю и едва не помешала строительству Панамского канала. Ученый-вирусолог, профессор Майкл Олдстоун, основываясь на свидетельствах современников ужасных эпидемий и ученых, «охотников за микробами», показывает, насколько глубоко влияние вирусов на жизнь человечества.
Билл Най — инженер, телеведущий популярных научных передач («Билл Най — научный парень») и директор Планетарного общества, занимающегося исследованиями в области астрономии и освоения космоса, а также популяризации науки. В своей книги об эволюции он увлекательно, с юмором, рассказывает о происхождении жизни, появлении новых видов, о дарвиновской теории и свидетельствах ее достоверности, которые мы можем найти в окружающей нас жизни, а также о последних исследованиях в медицине, биологии и генной инженерии.
Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.
«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.
Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.