Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [108]

Шрифт
Интервал

Свойства параллельного переноса определяют кривизну

Кривизна: расхождение геодезических и забор. Кривизна – это «мера неодинаковости» близких геодезических, измеряемая их относительным ускорением. Определение кривизны опирается на правила параллельного переноса, и точный ответ на вопрос «кривизна чего?» звучит как «кривизна заданных правил параллельного переноса». Чтобы выразить количественно, в каком темпе расходятся две соседние геодезические (рис. 6.31), мы выбираем место (точку) на одной из них, соединяем эту точку стрелкой

с другой геодезической и в той же выбранной точке проводим касательный вектор к первой геодезической. Относительное ускорение геодезических выражается как разность результатов параллельного переноса, выполняемого двумя способами, которые различаются порядком действий. В первом варианте сначала параллельно переносим касательный вектор вдоль стрелки
на вторую геодезическую, а затем то, что получится, переносим параллельно вдоль второй геодезической. (Стрелку
мы при этом проводим так, чтобы после переноса вдоль нее получился касательный вектор ко второй геодезической; это всегда можно сделать.) Во втором варианте сначала касательный вектор переносится параллельно вдоль первой геодезической, а уже затем получившийся вектор параллельно переносится на вторую. Разница между двумя результатами – относительное ускорение – и выражает схождение/расхождение геодезических. Эта математическая процедура выполняется для «очень близких» геодезических.


Рис. 6.32. Площадка, определяемая небольшими смещениями вдоль двух координатных линий. Показаны два различных пути, соединяющие начальную точку с противолежащей на координатной сетке


Кривизна – это набор «всех» таких расхождений, подходящим образом организованный по направлениям в пространстве-времени. Чтобы перечислить «все» расхождения указанного вида, надо перечислить все базовые способы направить геодезические и провести стрелку, которая их соединяет. Это удобнее сделать, решая эквивалентную, но чуть другую задачу о параллельном переносе двумя способами – задачу по постройке забора. В облюбованном уголке пространства-времени выберем каким-нибудь способом координатные линии; на рис. 6.32 показаны два семейства координатных линий. Вообще-то четырехмерное пространство-время полагается «расчертить» четырьмя такими семействами, но нам сейчас нужны именно два – любая пара из имеющихся четырех. Предпримем очень короткое путешествие: пройдем немного вдоль одной из координатных линий (назовем ее x), свернем на другую (скажем, y) и, пройдя по ней немного, отправимся назад по соседней линии x и, наконец, вернемся в исходную точку по линии y. Путешествие мысленное, и требуется оно только для того, чтобы обозначить «участок» в форме параллелограмма. Этот участок теперь и предлагается обнести забором из досок. Первую доску поставим в исходно выбранной точке и направим ее, скажем, вдоль координатной линии z (на рисунке не показана). Хороший забор – такой, который не «заваливается», а это означает, что следующую доску надо поставить параллельно первой, еще следующую – тоже параллельно и т. д. В дело оказывается вовлечен параллельный перенос! Для ускорения строительства работу поручают двум бригадам: каждая «привязывается» к самой первой доске, а затем первая продвигается сначала вдоль координатной линии x, а потом по координатной линии y, а вторая бригада идет сначала вдоль y, а потом вдоль x. В искривленном пространстве-времени забор «не сойдется»: первая и вторая бригады не согласятся по поводу того, как должна стоять финальная доска в месте их встречи. Это несогласие и определяется кривизной. Как всегда, стороны «участка» считаются малыми в математически точно определенном смысле. Полученная кривизна тогда относится к точке, откуда мы начали построение. (Чтобы узнать кривизну в какой-то другой точке, надо повторить все действия начиная оттуда.)

Чтобы выразить кривизну, надо сказать, как именно следует повернуть доску, которую ставит вторая бригада, чтобы она совпала с доской, которую ставит первая. Сказать это нужно, конечно, не для одного конкретного забора, который мы велели строить, направив самую первую доску вдоль линии z, а для любого забора – такого, первая доска которого смотрит в любом направлении. Базовых направлений четыре, по числу измерений пространства-времени[123]. А сам участок, обносимый забором, можно построить не только на малых смещениях по x и y, но и на малых смещениях вдоль любой пары направлений. Итак: два направления задают участок, а третье определяет ориентацию первой доски. Каждое направление – это одна из осей (x, y, z, t). Все эти возможности организуются в таблицу 4 × 4 × 4; в ней определенно встречаются случаи, когда площадки на самом деле нет (в качестве первого направления выбран, скажем, x, но в качестве второго – тоже x), но нам удобно в таких случаях не беспокоиться отдельно, а заменять все данные нулями. В остальных случаях, когда с площадкой все в порядке, мы вносим в таблицу данные, определяющие «доводку» финальной доски второй бригады, – и это


Рекомендуем почитать
Пять литров красного. Что необходимо знать о крови, ее болезнях и лечении

Гематолог-онколог Михаил Фоминых доступным языком рассказывает об анатомии и физиологии крови и кроветворных органов, наиболее часто встречающихся синдромах и заболеваниях системы крови, методах диагностики и лечения, о современной теории канцерогенеза, причинах развития онкологических заболеваний, развенчивает распространенные мифы о крови и ее болезнях. Эта книга содержит важные сведения, которые помогут вам более осознанно и уверенно общаться с врачами, однако ее цель – не только рассказать о возможностях диагностики и лечения гематологических заболеваний, но и расширить наши познания о крови – жизненно важной и необыкновенно интересной жидкой ткани организма.


Вирусы и эпидемии в истории мира. Прошлое, настоящее и будущее

С самого возникновения цивилизации человечество сосуществует с невидимыми и смертоносными врагами – вирусами. Оспа унесла больше жизней, чем все техногенные катастрофы и кровопролитнейшие войны XX века; желтая лихорадка не позволила Наполеону создать колониальную империю и едва не помешала строительству Панамского канала. Ученый-вирусолог, профессор Майкл Олдстоун, основываясь на свидетельствах современников ужасных эпидемий и ученых, «охотников за микробами», показывает, насколько глубоко влияние вирусов на жизнь человечества.


Неотрицаемое. Наш мир и теория эволюции

Билл Най — инженер, телеведущий популярных научных передач («Билл Най — научный парень») и директор Планетарного общества, занимающегося исследованиями в области астрономии и освоения космоса, а также популяризации науки. В своей книги об эволюции он увлекательно, с юмором, рассказывает о происхождении жизни, появлении новых видов, о дарвиновской теории и свидетельствах ее достоверности, которые мы можем найти в окружающей нас жизни, а также о последних исследованиях в медицине, биологии и генной инженерии.


Клеопатра

Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.


Ринг «быков» и «медведей»

«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.