Восемь этюдов о бесконечности. Математическое приключение - [30]
Фундаментальные правила сложения, которым нас научили еще в школе, гласят, что начинать надо со сложения самых правых цифр. Но здесь мы не можем найти самые правые цифры – десятичное представление этих чисел бесконечно! Что же делать? Я же говорил вам, что не следует насмехаться над Пифагором из-за того, что он не желал считать иррациональные числа числами.
Многие считают сделанное Пифагором открытие иррациональных чисел самым важным открытием во всей истории математики{20}.
Легенда утверждает, что Пифагор велел своим ученикам хранить его открытие иррациональности длины диагонали квадрата относительно длин его сторон в секрете. Однако один из них, Гиппас, нарушил данное ему обещание (неизвестно, по каким причинам – научным или политическим) и разгласил эту тайну. Далее легенда рассказывает, что Гиппас был изгнан из сообщества пифагорейцев, а кое-кто утверждает даже, что его утопили в море (он попросту не вернулся из одного из своих плаваний вокруг греческих островов). По другой версии, иррациональные числа открыл именно Гиппас, а Пифагор не имел к этому открытию никакого отношения.
Более чем через две тысячи лет после смерти Пифагора Кантор показал, что «почти» все вещественные числа иррациональны. В число таких чисел входят и два из самых важных чисел в математике – число Эйлера e и отношение длины окружности к ее диаметру, число π.
Комментарий и пять упражнений
Я обещал, что буду использовать в этой книге только четыре базовые математические операции. Но кому нужен такой «закон», который нельзя нарушить хотя бы один раз? Вот сейчас мы его и нарушим.
Числа, доказать иррациональность которых легче всего, порождаются операцией логарифмирования{21}. Например, рассмотрим log>23, то есть логарифм 3 по основанию 2. Докажем его иррациональность. Для начала предположим, что этому числу равно отношение m/n:
Исходя из определения логарифма и законов операций со степенями, из этого следует, что 2 >m/>n = 3, а (2 >m/>n)>n = 3>n, а следовательно, 2 >m = 3>n.
Однако никакая степень 2 не может быть равна какой бы то ни было степени 3[28]: 2 в любой степени всегда дает четное число, а 3 в любой степени – нечетное. Значит, мы пришли к противоречию. Другими словами, не существует таких чисел m и n, для которых
что означает, что m/n не может быть рациональным. Следовательно, log>23 – иррациональное число.
1. Докажите, что золотое сечение{22} ϕ[29] – иррациональное число.
2. Символом секты пифагорейцев была пентаграмма, вписанная в пятиугольник.
Докажите, что отношение длины диагонали правильного пятиугольника к длине одной из его сторон иррационально. Покажите также, что это отношение равно не произвольному иррациональному числу, а числу ϕ (см. предыдущую задачу). Другими словами, отношение любой диагонали этой фигуры к любой ее стороне равно золотому сечению!
Как же повезло Пифагору, что он так и не узнал, что эти нахальные иррациональные числа, которые он не желал считать равноправными членами семейства чисел, скрывались даже в его собственной эмблеме!
Пифагорейский символ можно дополнить следующим образом:
И такие «дополнения» можно продолжать до бесконечности!
1. Рационально ли число 0,07007000700007…?
2. Рационально ли число 0,123456789101112…?
3. А как насчет числа 0,01123581321345589144…, образованного из членов последовательности Фибоначчи – 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55… (эта последовательность начинается с 0 и 1, после чего каждый следующий член равен сумме двух предыдущих)?
5
Черепаха, Ахиллес и стрела: апории Зенона
Страх бесконечности, присущий древним грекам, замечательно выражается в знаменитых апориях[30] Зенона Элейского, родившегося около 490 г. до н. э. Он в основном работал в Греции[31] около 450 г. до н. э. О жизни Зенона известно мало. По-видимому, он провел большую ее часть на родине, в городе Элее, хотя Платон рассказывает нам в диалоге «Парменид» об интереснейшей встрече в Афинах, на которой присутствовали Зенон, Парменид и молодой Сократ.
Первоисточник Зенона не сохранился, и исследователи по большей части ссылаются на Аристотеля, который пересказывает апории Зенона в своей «Физике».
Зенон создавал свои апории на основе философии своего учителя и друга Парменида. Поэтому, прежде чем мы перейдем собственно к апориям Зенона, давайте узнаем кое-что о Пармениде и его необычной философии.
Взгляды Парменида на жизнь
Парменид, учитель и друг Зенона (Платон намекал даже, что Зенон с Парменидом были любовниками[32]), считается явлением исключительным не только в греческой философии, но и во всей истории западной философии. Единственная известная работа Парменида «О природе», написанная в форме поэмы, дошла до нас лишь в отрывках. Парменид описывает два взгляда на реальность: «путь истины» и «путь чувств». Говоря о «пути истины», он объясняет, что реальность безвременна, однородна, бесконечно плотна и неизменна. Говоря о «пути чувств», он объясняет мир кажущегося и мнений, ложный и обманчивый. Жизненная философия Парменида состояла в том, что мир чувств – всего лишь иллюзия, а истинная Вселенная, которую можно познать только путем строгих размышлений, безмолвна и неподвижна. Он утверждал, что истинная Вселенная находится сейчас точно в том же состоянии, в котором она находилась секунду назад, год назад, миллиард лет назад, – и пребудет в нем же вовеки.
Эта книга – не из серии «Помоги себе сам». В ней Хаим Шапира – дважды доктор наук, математик, философ, психолог, литератор – пытается найти ответ на волнующий каждого вопрос – что такое счастье? И что надо делать (или чего не делать), чтобы стать счастливым человеком. К поискам привлечены такие авторитеты, как Платон, Декарт, Шекспир, Чехов, Вуди Аллен… Маленький принц, Винни-Пух, Алиса из Страны чудес и многие другие. Читатель узнает также, почему в нашей жизни так важны числа, что считают высшим счастьем женщины и почему их точка зрения так удивляет мужчин, всегда ли ученье – свет, что такое гнев и какова цена истинной дружбы.Хаим Шапира написал очень смешную книгу об очень серьезных вещах.
Избегать риска любой ценой – это очень рискованный путь, считает видный израильский математик и философ, автор бестселлеров Хаим Шапира. Его лаконичная, написанная с юмором книга полна поучительных парадоксов и примеров, которые объединяет главная тема: рассказ о том, как теория игр влияет на нашу жизнь, как ее положения можно использовать в ведении переговоров, выработке навыков стратегического мышления, в справедливом разделении бремени и в решении множества повседневных задач. «Эта книга касается теории игр и слегка затрагивает ряд важных идей в статистике и теории вероятностей.
Предлагаем вашему вниманию адаптированную на современный язык уникальную монографию российского историка Сергея Григорьевича Сватикова. Книга посвящена донскому казачеству и является интересным исследованием гражданской и социально-политической истории Дона. В работе было использовано издание 1924 года, выпущенное Донской Исторической комиссией. Сватиков изучил колоссальное количество монографий, общих трудов, статей и различных материалов, которые до него в отношении Дона не были проработаны. История казачества представляет громадный интерес как ценный опыт разрешения самим народом вековых задач построения жизни на началах свободы и равенства.
Монография доктора исторических наук Андрея Юрьевича Митрофанова рассматривает военно-политическую обстановку, сложившуюся вокруг византийской империи накануне захвата власти Алексеем Комнином в 1081 году, и исследует основные военные кампании этого императора, тактику и вооружение его армии. выводы относительно характера военно-политической стратегии Алексея Комнина автор делает, опираясь на известный памятник византийской исторической литературы – «Алексиаду» Анны Комниной, а также «Анналы» Иоанна Зонары, «Стратегикон» Катакалона Кекавмена, латинские и сельджукские исторические сочинения. В работе приводятся новые доказательства монгольского происхождения династии великих Сельджукидов и новые аргументы в пользу радикального изменения тактики варяжской гвардии в эпоху Алексея Комнина, рассматриваются процессы вестернизации византийской армии накануне Первого Крестового похода.
Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.