Волшебный двурог - [6]

Шрифт
Интервал

— Хм… — протянул Илюша. — Постой-ка, я как будто бы что-то слышал на этот счет… только не помню что.

— А насчет любви к родному краю?

— К родному краю?.. — удивился Илюша. — А-а! Стой-ка, я, кажется, теперь вспомнил. Это такие стихи, мне их папа уже сколько раз читал. Их сочинил Валерий Брюсов:


Свой хор заветный водят музы
Вдали от дольних зол и бед.
Но ты родные Сиракузы
Люби, как древле Архимед.

Ты об этом говорил?

И так как Радикс подмигнул, мальчик воскликнул:

— Понял! Это ты спел песенку про архимедово число. Двадцать две совы на суках, то есть наверху, — это числитель. А семь мышей — те внизу, это знаменатель. Выходит дробь двадцать две седьмых, отношение окружности к диаметру. Только ведь это не очень точное значение! У папы в справочнике я видел это число π с пятнадцатью десятичными знаками, а папа говорит, что на самом деле этим знакам и конца нет. Впрочем, папа сказал, что очень уж много знаков и не нужно. А все-таки хочется запомнить побольше. Да никак не запомнишь!

— Это пустяки! — сказал Радикс. — Могу помочь тебе и

— 17 —

выдумать хоть тысячу песенок для этого, и все будут разные.

Про что хочешь? Про длинное π? Так я такое π тебе подарю, что с ним ты можешь делать микроскопы, телескопы и все, что хочешь. Только эту высокоторжественную песенку надлежит петь погромче:


Гордый Рим трубил победу
Над твердыней Сиракуз.
Но трудами Архимеда
Много больше я горжусь.
Надо нынче нам заняться,
Оказать старинке честь.
Чтобы нам не ошибаться,
Чтоб окружность верно счесть,
Надо только постараться
И запомнить все как есть:
Три — четырнадцать — пятнадцать —
Девяносто два и шесть!

Ну-с! — произнес Радикс. — Вот мел, вот тебе плоскость, то есть стена, она же доска, пиши!

Илюша взял мел и написал на стене:

3,1415926…

— Ясно. Теперь не забуду. Превосходная песенка!

— Песенка полезная, — отвечал, задумчиво улыбаясь, Радикс. — Ты можешь быть уверен, что это приближенное значение π годится для самого точного расчета, потому что если ты возьмешь даже не семь, а только шесть знаков, то и тогда получишь прекрасные результаты. Если, например, вычислять длину окружности, диаметр которой равен одному километру, то ошибка будет меньше миллиметра… В пятом веке нашей эры китайские математики предложили дробь 355/113 в качестве приближенного значения π. Эту дробь запомнить нетрудно.

Напиши по два раза три первых нечетных числа — единицу, тройку и пятерку, — то есть 113355, раздели эти шесть цифр на две группы, по три цифры в каждой: вторая будет числителем, а первая — знаменателем. Просто и ясно!

— Ловко! — ответил Илюша улыбаясь.

— Кстати, — добавил Радикс, — известно ли тебе, что египтяне полагали, что площадь круга равна квадрату восьми девятых диаметра? Если ты припомнишь формулу площади круга, то легко можешь найти, чем египтяне заменяли π. И тогда увидишь, что египетское приближение не так уж плохо. Ва- 

— 18 —

вилонские математики — древние звездочеты, халдеи — иногда считали π равным просто трем. Они исходили из того, что радиус шестикратно помещается в окружности в качестве хорды, и это деление круга сперва на шесть частей, а потом на двенадцать и привело к первому, очень неточному значению числа π, которое было принято равным 3,0. Это же значение приводится дважды и в библии. А индусы полагали, что корень квадратный из десяти очень близок к числу π. Ты это и сам легко можешь проверить на бумажке[3]. Тебе, быть может, небезынтересно будет узнать, что в первом русском учебнике математики, в «Арифметике» Леонтия Магницкого, которая вышла в свет в самом начале восемнадцатого века, первое значение для π, которое узнали на Руси, как раз и было архимедовым числом, то есть равнялось двадцати двум седьмым.

И если ты действительно любишь математику, то так и быть, я могу тебе подарить на память о нашей встрече совершенно замечательное приближение для π. В нем довольно много знаков, а нашел его математик Шэнкс лет восемьдесят тому назад. Я так полагаю, этого тебе хватит! Вот оно какое:


π = 3,
14159 26535 89793 23846 26433 83279 50288
41971 69399 37510 58209 74944 59230 78164
06286 20899 86280 34825 34211 70679 82148
08651 32823 06647 09384 46095 50582 23172
53594 08128 48111 74502 84102 70193 85211
05559 64462 29489 54930 38196 44288 10975
66593 34461 28475 64823 37867 83165 27120
19091 45648 56692 34603 48610 45432 66482
13393 60726 02491 41273 72458 70066 06315
58817 48815 20920 96282 92540 91715 36436
78925 90360 01133 05305 48820 46652 13841
46951 94151 16094 33057 27036 57595 91953
09218 61173 81932 61179 31051 18548 07446
23799 62749 56735 18857 52724 89122 79381
83011 94912 98336 73362 44065 66430 86021
39…[4]

В этот самый миг вдруг где-то сбоку раздалось оглушительно-грозное громыхание, а вслед за ним послышался такой пронзительный шип, что Илюша даже вспомнил, как шипит паровоз, когда машинист выпускает пар. Только здесь, видимо, шипел не один паровоз, а штук десять сразу…

— 19 —

Илюша невольно посмотрел на Радикса и очень удивился. На тощем личике Радикса был написан неподдельный ужас.

Его длинный клюв-ротик раскрылся, зубы стучали, глаз вытаращился.

— Что такое? — спросил шепотом Илюша.


Еще от автора Сергей Павлович Бобров
Восстание мизантропов

Повесть поэта-футуриста, стиховеда, популяризатора математики и писателя-фантаста С. П. Боброва (1889–1971) «Восстание мизантропов» — фантастика в декорациях авангардной прозы. Эту повесть иногда называют одной из первых советских утопий, но в той же мере она является и антиутопией, и гофманиадой, и опередившим свое время «постмодернистским» сочинением. В приложении к книге — воспоминания о С. Боброве М. Л. Гаспарова (1935–2005).


К<от>. Бубера. Критика житейской философии

Неизвестная книга Сергея Боброва.К Бубера. Критика житейской философии. М., Центрифуга, 1918Из собрания библиотеки Стэнфордского Университета.Под редакцией М.Л. Гаспарова.http://ruslit.traumlibrary.net.


Сборник: стихи и письма

Источники1) http://elib.shpl.ru/ru/nodes/3533; http://ruslit.traumlibrary.net//book/futuristy-peta/futuristy-peta.html2) Вавилон: Вестник молодой литературы. Вып. 2 (18). - М.: АРГО-РИСК, 1993. Обложка Олега Пащенко. ISBN 5-900506-06-1. С.72-79. 3) Архив творчества поэтов «Серебряного века» http://slova.org.ru/bobrov/index/4) http://lucas-v-leyden.livejournal.com/ 5) Лица. Биографический альманах. Книга 1. Составитель: А.В. Лавров. СПб.: Феникс, Париж: Atheneum, 1992 г. Серия: Лица. Биографический альманах. ISBN: 5-85042-046-0, 5-85042-047-9.


Лира Лир

Третья книга стихов, с иллюстрациями автора.Тексты представлены в современной орфографии.http://ruslit.traumlibrary.net.


Логарифмическая погоня

Научная фантастика с уклоном в гофманиану и математику образца 1922 г.Автор - поэт-футурист, поэтому рассказ написан «языком будущего», чересчур красочно, необычно, с экстравагантными художественными образами.


Вертоградари над лозами

Первая книга стихов С. Боброва осталась и самой знаменитой в его творчестве. Своей славой она во многом была обязана иллюстрациям Н. Гончаровой – десяти цветным двухстраничным литографиям. Поэт даже посвятил им специальную статью, помещенную в качестве послесловия. Техника цветной литографии в оформлении футуристической книги была применена впервые. Тираж 500 экз.https://ruslit.traumlibrary.net.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.