Волшебный двурог - [8]

Шрифт
Интервал

— Мне хочется посмотреть, и… мне интересно! Я хочу узнать! Да!

— Что же ты хочешь посмотреть, мальчик? — спросил Великий и Совершенный Змий, отец змиев.

— Я, — сказал Илюша, — очень люблю математику… И если у меня эта задачка не выходила, так это не оттого, что я лентяй. Мне хочется посмотреть и узнать… про все.

— Про все? — спросил Змий, видимо немного удивленный. — А не много ли ты хочешь?

— Не знаю. Только я буду очень стараться, потому что мне интересно, и вообще… я хочу быть математиком!

— А может, лучше из рогатки? — спросил Змий, и Илюше показалось, что это страшное чудовище насмехается над ним. — Или волейбол, например? — продолжал Змий. — Саженками наперегонки? На лыжах с горки?

— Саженками я хорошо умею, — отвечал Илюша, вспомнив, как приятно плыть через речку в прохладной воде, а над головой у тебя звенят синекрылые стрекозы, — и волейбол тоже штука хорошая. — Только мне хочется быть математиком.

— Так, — сказал Великий Змий. — Но ты понимаешь, что это не так просто? И не струсишь?

— Нет! — твердо ответил Илюша. — Трусить не буду. Только… вы, пожалуйста, простите Радикса…

— Посмотрим, — медленно и надменно процедил Волшебный Змий сквозь зубы таким тоном, который не предвещал ничего хорошего.

И вслед за этим он медленно расплылся в воздухе и исчез.

Илюша облегченно вздохнул, обернулся и с трудом заметил внизу малюсенький радикал, не больше двух миллиметров ростом.

— Ну, видишь, он ушел! — сказал ему Илюша. — Значит, он не сердится.

— Не сердится! — отвечал Радикс, понемногу вырастая до пяти сантиметров. — Плохо ты его знаешь. Вот начнут теперь тебя водить по Великим Испытаниям, тогда посмотрим, что ты запоешь!

— А что такое Великие Испытания?

— Вот увидишь, — уныло произнес Радикс. — Не обрадуешься… Однако, разумеется, коль скоро он сказал…

— Что значит «коль скоро»? — спросил Илюша.

— «Коль скоро» — значит «если», — грустно отвечал Радикс.

— 23 —

— А почему же ты не говоришь просто «если»?

— «Почему, почему»!.. — сказал Радикс рассердившись. — Так полагается.

Например: коль скоро мальчик пристает к почтенным и таинственным существам с разной чепухой, он, возможно, подвергнется физикальному поучению, например, получит березовой каши сколько влезет. Угощение на славу.

— Ну что это такое! — воскликнул возмущенный Илюша. — Я думал, ты что-нибудь объяснишь…

— Как сказать! Роджер Бэкон, который жил в тринадцатом веке и которого звали Доктор Восхитительнейший и считали колдуном, хотя он просто был замечательный по тем временам физик и философ, утверждал, что только розгами и можно вогнать в мозги ученика первые четыре теоремы из одного старинного учебника геометрии, а пятая теорема уже называется Элефуга, что значит «бегство несчастного».

— А сам-то он все-таки не убежал! — с торжеством ответил Илюша. — Да и я, например, всю уж планиметрию прошел, и без всякой березовой каши.

— Н-да, — неохотно отозвался Радикс и, помолчав, добавил: — А знаешь, что это была за теорема, о которой говорили такие страшные вещи? Вот что она гласит: «В равнобедренных треугольниках углы при основании равны, а если продолжить равные стороны, то и углы под основанием равны». Как по-твоему: трудная теорема?

— По-моему, нет, — ответил Илюша. — Чего ж тут трудного? Я бы так поступил: перегнул бы треугольник по высоте, то есть по оси симметрии. По-моему, простая теорема.


— Ну вот, — отвечал Радикс, — так представь себе, в давние времена ее еще называли «ослиным мостом», то есть таким местом, дальше которого упрямого лентяя сдвинуть невозможно. А впрочем… Сейчас ведь дело-то не в этом.

В это время слева раздались какие-то очень четкие шаги — раз, два! раз, два! — вроде маршировки… Илюша не спеша обернулся и увидел престранного человечка, у которого вместо головы был квадрат, перечеркнутый из угла в угол двумя диагоналями, а с обоих боков этот квадрат замыкался двумя дугами. Странная рожица довольно ехидно ухмылялась.

— 24 —

— Начинается! — пробормотал Радикс с досадой.

— Привет! — сказала квадратная рожица, уморительно гримасничая. — Привет, прелестный мальчик, очень рады вас видеть! Давно дожидаемся. Любопытство тоже вещь не лишняя, как сказал один толстый сом, проглотив утенка, который собирался клюнуть его в самый ус.

— Эх, — сказал Радикс на ухо Илюше, — ведь вот пришлют тебе такую ехиду! Всю душу вымотает.

— Прошу вас, очаровательный юноша! — галантно произнесла квадратная рожица, отвешивая низкий поклон и расшаркиваясь. — Будьте уж так любезны, снизойдите к этой маленькой прогулке. В высшей степени важно для моциона, как сказал один рассеянный паренек, споткнувшись о здоровенную тумбу…

Илюша посмотрел на Радикса и увидел, что его новому другу вовсе не охота на все это смотреть… Перед Илюшей вдруг выросла синеватая стена, а в ней небольшое круглое отверстие, через которое можно было пролезть.

— Замечательно уютная прогулка! — сообщил квадратнорожий человечек. — Прелестная Розамунда ждет не дождется вашу милость. У нее там масса всяких развлечений. Прошу вас, не стесняйтесь.

Илюша, не совсем понимая, куда клонят эти загадочные речи, все же полез в отверстие. Радикс было сунулся туда же, но квадратнорожий человечек погрозил ему пальцем. Илюша оглянулся и понял, что остался один. Он пошел по длинному коридору, который, петляя, заворачивал то в одну, то в другую сторону; несколько раз он проходил в какие-то двери и опять шел по бесконечным переходам, выходил на перекрестки, сворачивал, попадал в тупики, возвращался и снова поворачивал и, наконец, стал замечать, что уже не может понять, был он на этом месте или только что пришел сюда в первый раз. Тогда он решил вернуться, но и это оказалось очень трудно: невозможно было сообразить, в какую сторону идти. Он пошел наугад, дошел до синеватой стены, остановился и, покопавшись в кармане, достал кусочек мела. Потом, двинувшись дальше, стал ставить крестики у поворотов. Наконец, когда уж он совсем выбился из сил, он увидел знакомое круглое оконце, вылез в него и увидел унылую фигуру Радикса.


Еще от автора Сергей Павлович Бобров
Восстание мизантропов

Повесть поэта-футуриста, стиховеда, популяризатора математики и писателя-фантаста С. П. Боброва (1889–1971) «Восстание мизантропов» — фантастика в декорациях авангардной прозы. Эту повесть иногда называют одной из первых советских утопий, но в той же мере она является и антиутопией, и гофманиадой, и опередившим свое время «постмодернистским» сочинением. В приложении к книге — воспоминания о С. Боброве М. Л. Гаспарова (1935–2005).


К<от>. Бубера. Критика житейской философии

Неизвестная книга Сергея Боброва.К Бубера. Критика житейской философии. М., Центрифуга, 1918Из собрания библиотеки Стэнфордского Университета.Под редакцией М.Л. Гаспарова.http://ruslit.traumlibrary.net.


Сборник: стихи и письма

Источники1) http://elib.shpl.ru/ru/nodes/3533; http://ruslit.traumlibrary.net//book/futuristy-peta/futuristy-peta.html2) Вавилон: Вестник молодой литературы. Вып. 2 (18). - М.: АРГО-РИСК, 1993. Обложка Олега Пащенко. ISBN 5-900506-06-1. С.72-79. 3) Архив творчества поэтов «Серебряного века» http://slova.org.ru/bobrov/index/4) http://lucas-v-leyden.livejournal.com/ 5) Лица. Биографический альманах. Книга 1. Составитель: А.В. Лавров. СПб.: Феникс, Париж: Atheneum, 1992 г. Серия: Лица. Биографический альманах. ISBN: 5-85042-046-0, 5-85042-047-9.


Лира Лир

Третья книга стихов, с иллюстрациями автора.Тексты представлены в современной орфографии.http://ruslit.traumlibrary.net.


Логарифмическая погоня

Научная фантастика с уклоном в гофманиану и математику образца 1922 г.Автор - поэт-футурист, поэтому рассказ написан «языком будущего», чересчур красочно, необычно, с экстравагантными художественными образами.


Вертоградари над лозами

Первая книга стихов С. Боброва осталась и самой знаменитой в его творчестве. Своей славой она во многом была обязана иллюстрациям Н. Гончаровой – десяти цветным двухстраничным литографиям. Поэт даже посвятил им специальную статью, помещенную в качестве послесловия. Техника цветной литографии в оформлении футуристической книги была применена впервые. Тираж 500 экз.https://ruslit.traumlibrary.net.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.