Вначале была аксиома. Гильберт. Основания математики - [33]

Шрифт
Интервал

1. Нуль есть натуральное число.

2. Следующее за натуральным числом есть натуральное число.

3. Нуль не следует ни за каким натуральным числом.

4. Всякое натуральное число следует только за одним натуральным числом.

5. Если какое-либо предложение доказано для нуля и если из допущения, что оно верно для натурального числа А, вытекает, что оно верно для следующего за А натурального числа, то это предложение верно для всех натуральных чисел.

Пятая аксиома получила название принципа индукции и является основополагающей для доказательства теоремы о натуральных числах без необходимости проверять каждое из них по одному. Принцип формализует интуитивное представление о том, что когда все фишки домино выстроены в одну линию, падение первой из них (нуля) предполагает падение всех остальных (всех натуральных чисел). На основе этих аксиом можно определить сложение и умножение натуральных чисел, а также расположить их в упорядоченном виде. Результат известен как арифметика Пеано.

Джузеппе Пеано, около 1910 года.



К несчастью, смелая программа Фреге была поставлена под сомнение из-за обилия логических парадоксов. В своих работах Фреге всегда исходил из принципа выделения, согласно которому каждому понятию можно назначить его расширение, то есть любое свойство определяет класс элементов, которые удовлетворяют этому свойству. Аксиома существования классов была «Базовым Законом V» «Основных законов арифметики», и именно ею объясняется широкое распространение логицизма Фреге. В письме от 16 июня 1902 года молодой математик Бертран Рассел (1872-1970) проинформировал преподавателя Фреге о том, что в рамках его системы на основе этого несчастного закона может быть выведено противоречие. Парадокс Рассела показывал, что назначение каждому свойству связанного с ним класса было делом рискованным. Узнав об этом противоречии, Фреге добавил приложение ко второму тому «Основных законов арифметики», в котором попытался спасти свой огромный труд, ограничив применение принципа выделения. Вскоре он понял, что от этого мало проку, и остановил публикацию третьего тома своей главной работы. Он так и не оправился от удара. Погрузившись в меланхолию, без всякой надежды, но и без страха он признавал катастрофу:

«Нет для ученого ничего ужаснее, чем выяснить, что все основание его работы рушится, именно в тот момент, когда он эту работу заканчивает. Меня в эту ситуацию поставило письмо господина Рассела, моя работа была почти готова к печати».

Продемонстрировав интеллектуальную целостность, которой Рассел восхищался всю жизнь, Фреге ответил последнему, что арифметика, а с ней и вся математика вновь пошатнулись. Здравого смысла не было достаточно для поддержания безопасности математики перед лицом угроз, исходящих от логики.


ОБИЛИЕ ПАРАДОКСОВ

До весны 1901 года, когда Рассел обнаружил свой парадокс, согласно Фреге, считалось, что каждому свойству соответствует один класс, который образован сущностями, обладающими этим свойством. Рассел изучал поведение собственных классов, то есть тех, которые являются членами самих себя. Например, класс всех классов (который, являясь другим классом, принадлежит сам себе) или класс всех понятий (являясь другим понятием, также принадлежит сам себе). Логические огрехи неизбежны: если в библиотеке поместить имеющий черную обложку каталог всех книг в библиотеке, у которых имеется черная обложка, этот каталог каталогизирует сам себя.

Возьмем класс R всех классов, которые обладают свойством не быть членами самих себя, формально: R = [х: х /ϵ х], где ϵ — символ принадлежности (/ϵ здесь замена перечеркнутого ϵ). И зададимся вопросом, является ли R членом самого себя, если R ϵ R. Мы выясним, что любой ответ сразу же предполагает противоположный ответ. Если это так, то это не так. Если это не так, то это так. Действительно, если R ϵ R, то есть если R принадлежит самому себе, то, по определению, R /ϵ R, то есть R не принадлежит самому себе, поскольку это класс всех классов с этим свойством. Но и наоборот, если R /ϵ R, то R ϵ R, поскольку оно выполняет свойство, определяющее класс всех классов, которые не являются членами самих себя. В итоге получается противоречие: R ϵ R только тогда, когда R /ϵ R. Класс R принадлежит самому себе только тогда, когда он не принадлежит самому себе. Рассел был в недоумении от абсурда, с которым он столкнулся. Этому противоречию он затем дал название парадокса брадобрея: цирюльник в деревушке утверждает, что бреет всех мужчин, которые не бреются сами, и никого больше. В один прекрасный день, проснувшись, он задается вопросом, кто же бреет его, и в замешательстве осознает, что бреет сам себя тогда и только тогда, если не бреет сам себя. Бедный цирюльник попадает в настоящее логическое болото.

Французский математик Анри Пуанкаре был первым, кто указал на то, что источник парадоксов, атакующих логику, заключается в цикличности, в виде автореференции или принадлежности самому себе. Парадоксы держались на использовании непредикативных определений — тех, в которых определяемое входит в состав определения. Позже Рассел назвал это принципом порочного круга. Неудивительно, что нарушение этого принципа ведет к парадоксам, антиномиям и противоречиям, многие из которых признаются даже вне формальных языков, в естественных языках. В качестве примера служит хорошо известный парадокс лжеца, приписываемый Эпимениду Критскому (в своих письмах о нем упоминает даже святой Павел). В одном из стихотворений Эпименид порицает критян, называя их лжецами. Но поскольку он сам критянин, его утверждение, относящееся к самому себе, преобразуется в «я лгу». В этом случае то, что он говорит, не может быть правдой, значит, критяне не лгут. Но если они не лгут, то и Эпименид тоже, поэтому получается, что критяне лгут, и так далее.


Рекомендуем почитать
Пойти в политику и вернуться

«Пойти в политику и вернуться» – мемуары Сергея Степашина, премьер-министра России в 1999 году. К этому моменту в его послужном списке были должности директора ФСБ, министра юстиции, министра внутренних дел. При этом он никогда не был классическим «силовиком». Пришел в ФСБ (в тот момент Агентство федеральной безопасности) из народных депутатов, побывав в должности председателя государственной комиссии по расследованию деятельности КГБ. Ушел с этого поста по собственному решению после гибели заложников в Будённовске.


Молодежь Русского Зарубежья. Воспоминания 1941–1951

Рассказ о жизни и делах молодежи Русского Зарубежья в Европе в годы Второй мировой войны, а также накануне войны и после нее: личные воспоминания, подкрепленные множеством документальных ссылок. Книга интересна историкам молодежных движений, особенно русского скаутизма-разведчества и Народно-Трудового Союза, историкам Русского Зарубежья, историкам Второй мировой войны, а также широкому кругу читателей, желающих узнать, чем жила русская молодежь по другую сторону фронта войны 1941-1945 гг. Издано при участии Posev-Frankfurt/Main.


Заяшников Сергей Иванович. Биография

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жизнь сэра Артура Конан Дойла. Человек, который был Шерлоком Холмсом

Уникальное издание, основанное на достоверном материале, почерпнутом автором из писем, дневников, записных книжек Артура Конан Дойла, а также из подлинных газетных публикаций и архивных документов. Вы узнаете множество малоизвестных фактов о жизни и творчестве писателя, о блестящем расследовании им реальных уголовных дел, а также о его знаменитом персонаже Шерлоке Холмсе, которого Конан Дойл не раз порывался «убить».


Дуэли Лермонтова. Дуэльный кодекс де Шатовильяра

Настоящие материалы подготовлены в связи с 200-летней годовщиной рождения великого русского поэта М. Ю. Лермонтова, которая празднуется в 2014 году. Условно книгу можно разделить на две части: первая часть содержит описание дуэлей Лермонтова, а вторая – краткие пояснения к впервые издаваемому на русском языке Дуэльному кодексу де Шатовильяра.


Скворцов-Степанов

Книга рассказывает о жизненном пути И. И. Скворцова-Степанова — одного из видных деятелей партии, друга и соратника В. И. Ленина, члена ЦК партии, ответственного редактора газеты «Известия». И. И. Скворцов-Степанов был блестящим публицистом и видным ученым-марксистом, автором известных исторических, экономических и философских исследований, переводчиком многих произведений К. Маркса и Ф. Энгельса на русский язык (в том числе «Капитала»).