Вероятности и неприятности. Математика повседневной жизни - [3]

Шрифт
Интервал


Попробуйте мысленно нанизать на шнурок несколько таких петель разных знаков и вычислите результат и его знак. Чтобы наушники не запутывались, число положительных и отрицательных петель должно оказаться равным. Таких способов сложения проводов несколько, один из них показан на рис. 1.2. Здесь петли разных «знаков» появляются сразу парами и взаимно уничтожают друг друга, не формируя узлов. Уже много лет я складываю наушники именно так, чувствуя себя крутым топологом, и всякий раз радуюсь как фокусу, когда они сами собой полностью разматываются от одного небрежного встряхивания рукой.


Рис. 1.2. Один из способов складывания проводов, не приводящий к их запутыванию. Он хорош еще и тем, что попутно вы складываете пальцы в мудру любви


Но и среди стохастических по природе законов не все одинаково интересны. Например, закон Бука («Ключи всегда находишь в последнем кармане») не имеет рационального основания. Простой подсчет показывает, что при равной вероятности отыскать ключи для всех карманов последний ничем не отличается от прочих. Впрочем, этот закон можно трактовать разве что как забавный трюизм: утверждение Бука верно всегда, поскольку тот карман, в котором ключи будут обнаружены, окажется завершающим в процессе поиска и, следовательно, последним. Однако и здесь есть о чем поговорить. В процессе перебора карманов так называемая условная вероятность того, что ключи лежат в последнем из них, действительно повышается. Но это уже нельзя трактовать как вероятность того, что ключи находятся в последнем кармане, тут уже другая задача. Мы вернемся к этому примеру в главе 5.

Нас будут интересовать законы парадоксальные и поучительные, те, которые выглядят злым роком, выбирающим из множества вариантов самые досадные и неприятные, наперекор интуиции, подсказывающей, что этот вариант не должен быть самым вероятным. И, прежде чем приступить к детальным и точным рассуждениям о случайностях и вероятностях, предположим, что какая-то интуиция в отношении случайных процессов и вероятностей у нас уже есть. Это вполне допустимо даже в математической книге — до какого-то момента использовать интуитивное представление о предмете, а потом дать строгое определение. Тем самым, во-первых, мы определяем границы применимости нашей интуиции, а во-вторых, расширяем их в правильном с научной точки зрения направлении. Но не будем забывать о законе Вертерна: «Предположение — мать любой неразберихи», и все наши гипотезы и даже строгие выводы постараемся, где возможно, проверять с помощью имитационного моделирования.

А при чем тут математика?

Петли, наушники, законы подлости, неприятности… при чем же тут математика? Почему вообще имеет смысл рассуждать о законах подлости не так, как Артур Блох, когда он просто посмеялся и нашел меткий афоризм?

С математикой знакомы все, но мало кто готов ответить на вопрос: что делают математики? Считают и вычисляют? Рисуют треугольники и круги на бумаге в клеточку? Передвигают туда-сюда буквы в уравнениях? Придумывают странные значки и закорючки, чтобы потом писать непонятные тексты? Решают задачи, вычисляя что-то по заказу инженеров, медиков, химиков и других практиков?

Если вы никогда этого не делали, загляните в какой-нибудь математический журнал — просто из любопытства. Сейчас это легко сделать не выходя из дома: поищите в Сети что-то на тему «гомологическая теория типов» или «топология». Вы поразитесь тому, насколько то, что вы там обнаружите, не похоже на школьный образ математики. Но вот что важно: эта колоссальная разница не говорит о том, что есть одна, «простая» математика и другая, «сложная». Математику часто называют языком. Как на любом живом человеческом языке можно писать анекдоты и незамысловатые детские стишки или неуловимо тонкую поэзию, тяжеловесный роман или многостраничный договор, так и с помощью математики можно рассуждать о числах и отрезках, а можно — о петлях и поверхностях, многомерных пространствах и даже основах самой этой науки. Не нужно думать, что числа и отрезки — самое простое, с чем работают математики! Современные теория чисел и геометрия — огромные и во многом неизведанные области, в которых ведутся очень интенсивные исследования.

Но что же все-таки изучают математики? Для чего им этот язык? Чаще всего речь идет о тех или иных моделях. Например, что может быть моделью количества? Число, скажете вы. Но любое ли число годится для этого? Младшие школьники, впервые сталкиваясь с отрицательными числами, испытывают замешательство, ведь модель числа оказывается шире привычного им понятия количества. Переход от количества к шагам помогает понять, что числа годятся для моделирования движений на прямой. Тогда отрицательные числа обретают наконец смысл. А чем можно моделировать скорость? Тоже числом. Но если я скажу вам, что двигаюсь со скоростью 60, будет ли этого достаточно для описания того, что со мной происходит? Точно нет! Остается неясно ни куда я двигаюсь, ни, собственно, с какой скоростью: 60 может означать как 60 км/ч, так и 60 мм/год. Отсюда можно заключить, что для моделирования скорости только числа недостаточно. А если, желая объяснить вам, как я перемещаюсь, я изображу стрелку, станет ли понятнее? Стрелка — ориентированный отрезок — в качестве модели скорости лучше. Она показывает направление, а сравнив ее с какой-то эталонной стрелкой, принятой за единицу, можно определить ее масштаб. Более того, стрелки можно складывать и умножать на числа, получая новые корректные стрелки! И, главное, если мне удастся придумать, как однозначно сопоставлять скорости предметов стрелкам на бумаге, причем окажется, что если


Рекомендуем почитать
Неудобное наследство: Гены, расы и история человечества

Человечеству в ХХ веке пришлось пережить многие войны, национальные конфликты и революции, сопровождавшиеся кровавыми расправами одних сторон над другими. Характер и масштаб их был разный, но в основе своей они нередко несли расовые противоречия.С тех пор научное сообщество в своем большинстве наложило гласные и негласные запреты не только на явно расистские учения, как, например, евгенику, но и на вполне научные области знания — среди них генетические, биологические, антропологические направления, связанные с развитием и особенностями человеческих рас.


[Не]правда о нашем теле. Заблуждения, в которые мы верим

Знать правду весьма полезно, особенно о своей жизни и своем здоровье. Это экономит силы, время и деньги, которых можно лишиться, гоняясь за химерами. Мифы о здоровье окружают нас везде, и их своевременное развенчание — залог полноценной жизни! В этой книге Андрей Сазонов собрал тридцать распространенных медицинских мифов, ложных утверждений, о который все не только слышали, но и успешно претворяли в жизнь. Какие продукты сжигают жиры, и есть ли смысл в перекусах? Вода обычная и минеральная — нужно ли нам выпивать 8 стаканов ежедневно? Седина от стресса и аллергия от тополиного пуха — где правда? Каждый развенчанный миф — шаг к осознанию того, как действительно нужно следить за своим здоровьем. Давайте жить качественно! Лечится тем, что помогает, покупать то, что нужно, делать то, что идет нам на пользу. Ударим по мифам научным подходом!


Великая разруха Московского государства, 1598–1612 гг.

В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.


Знание-сила, 1997 № 02 (836)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 01 (967)

Ежемесячный научно-популярный и научно-художественный журнал.


Десять уравнений, которые правят миром. И как их можете использовать вы

Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.


Почему небо темное. Как устроена Вселенная

В книге рассказывается о том, как на протяжении нескольких столетий ученые пытались выяснить, почему ночью темно. Оказывается, этот вопрос связан с самым общим устройством нашей Вселенной — с тем, конечна она во времени и в пространстве или бесконечна, расширяется ли она на самом деле и из чего состоит. В книге подробно обсуждаются основные наблюдательные факты, лежащие в основе современной космологии, и история их открытия.Для всех, кто интересуется астрономией и космологией — от старшеклассников до специалистов в других областях науки.


Бесконечная сила

Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.


Парадокс упражнений

Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.