Великая Теорема Ферма - [51]
8 августа 1900 года Гильберт выступил с историческим докладом на II Международном конгрессе математиков в Париже. Гильберт сформулировал двадцать три проблемы, имевшие, по его мнению, наибольшее значение. Первые из них были посвящены логическим основаниям математики. По замыслу Гильберта, сформулированные им проблемы должны были привлечь внимание математического мира и стать программой будущих исследований. Гильберт хотел гальванизировать математическое сообщество, чтобы оно помогло реализовать его ви́дение математической системы, свободной от сомнений и противоречий — честолюбивый замысел, суть которого Гильберт завещал высечь на своем надгробии:
Wir mussen wissen, Wir werden wissen.[11]
Огромный вклад в осуществление так называемой гильбертовской программы внес Готтлоб Фреге, временами вступавший в острейшее соперничество с Гильбертом. Более десяти лет Фреге посвятил выводу сотен сложных теорем из простых аксиом, и достигнутые успехи вселили в него уверенность, что он находится на пути к осуществлению значительной части намеченной Гильбертом программы. Одним из ключевых достижений Фреге было создание самого определения числа. Например, что мы в действительности понимаем под числом 3? Оказалось, что для определения числа 3 Фреге понадобилось сначала определить «троичность».
«Троичность» — это абстрактное свойство, присущее всем наборам, или множествам, содержащим по три объекта. Например, «троичность» может быть использована и при описании поросят в известной детской песенке, и при описании множества сторон треугольника. Фреге заметил, что свойством «троичности» обладают многочисленные множества и воспользовался абстрактной идеей таких множеств для определения самого числа «3». Он создал новое множество и поместил в него все множества, обладающие свойством троичности, и назвал это новое множество «множество 3». Таким образом множество имеет три члена в том и только в том случае, если оно принадлежит «множеству 3».
Для понятия, которым мы пользуемся ежедневно, такое определение может показаться чересчур сложным, но столь строгое описание «множества 3» необходимо для бескомпромисной программы Гильберта.
В 1902 году тяжкий труд, добровольно возложенный на себя Фреге, подошел к концу: Фреге подготовил к печати гигантский двухтомный трактат «Grundgesetze der Arithmetik»[12], который должен был установить в математике новый стандарт строгости.
Тогда же английский логик Бертран Рассел, также внесший немалый вклад в осуществление грандиозного проекта Гильберта, сделал ошеломляющее открытие: строго следуя предписаниям Гильберта, он все же наткнулся на противоречие. Позднее Рассел вспоминал свою собственную реакцию на удручающее осознание того, что вся математика может быть внутренне противоречива: «Сначала я было предположил, что легко и просто сумею преодолеть это противоречие, и что в мои рассуждения, возможно, где-то вкралась какая-нибудь тривиальная ошибка. Но постепенно мне становилось ясно, что это не так… Всю вторую половину 1901 года я надеялся, что решение будет несложным, но к концу года понял, что предстоит нелегкая работа… Я взял за обыкновение бродить каждый вечер с одиннадцати до часу ночи и научился различать три различных звука, которые издает козодой. (Большинству людей знаком лишь один звук.) Я сосредоточенно пытался разрешить полученное мной противоречие. Каждое утро я усаживался перед чистым листом бумаги и весь день (за исключением короткого перерыва на ленч) не сводил с листа глаз. Очень часто, когда наступал вечер, лист так и оставался пустым».
Выхода из этого противоречия не было. Работа Рассела нанесла серьезный урон мечтам о математической системе, свободной от сомнений, противоречий и парадоксов. Он написал Фреге, рукопись книги которого уже находилась в печати. Письмо Рассела практически свело на нет работу всей жизни Фреге, но, несмотря на смертельный удар, Фреге опубликовал свой magnum opus[13], невзирая на сообщение Рассела, и только добавил постскриптум ко второму тому: «Вряд ли что-нибудь может быть более нежелательным для ученого, чем сомнения в своей правоте в тот самый момент, когда он завершает свой труд. Именно в таком положении я оказался, получив письмо от мистера Бертрана Рассела в тот момент, когда моя работа уже должна выйти из печати».
По иронии судьбы, обнаруженное Расселом противоречие выросло из столь любимых Фреге множеств. Через много лет в своей книге «Мое философское развитие» Рассел вспоминал тот яркий ход рассуждений, который оспаривал работу Фреге: «Мне показалось, что множество иногда может, а иногда не может быть членом самого себя. Например, множество чайных ложек само не есть чайная ложечка, а множество вещей, не являющихся чайными ложечками, есть одна из вещей, не являющихся чайной ложечкой». Именно это любопытное и на первый взгляд безобидное замечание Рассела привело к катастрофическому парадоксу.
Парадокс Рассела часто объясняют на примере истории о дотошном библиотекаре. Однажды, проходя между книжных полок, этот библиотекарь набрел на подборку каталогов. Там были отдельные каталоги художественной прозы, библиографических указателей, поэзии и т. д. Библиотекарь отметил, что в одних каталогах имелись ссылки на самих себя, тогда как в других таких ссылок не было.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
“Ни кошелька, ни жизни” Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине.
Саймон Сингх получил степень кандидата наук по физике в Кембриджском университете. Во время работы продюсером на Би-би-си снял удостоенный награды Британской академии кино и телевидения документальный фильм «Великая теорема Ферма» и написал бестселлер под тем же названием.Шифры используются с тех пор, как люди научились писать. В «Книге шифров» Саймон Сингх посредством волнующих историй о шпионаже, интригах, интеллектуальном блеске и военной хитрости показывает захватывающую историю криптографии..
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Джон Нейхардт (1881–1973) — американский поэт и писатель, автор множества книг о коренных жителях Америки — индейцах.В 1930 году Нейхардт встретился с шаманом по имени Черный Лось. Черный Лось, будучи уже почти слепым, все же согласился подробно рассказать об удивительных визионерских эпизодах, которые преобразили его жизнь.Нейхардт был белым человеком, но ему повезло: индейцы сиу-оглала приняли его в свое племя и согласились, чтобы он стал своего рода посредником, передающим видения Черного Лося другим народам.
Аннотация от автораЭто только кажется, что на работе мы одни, а дома совершенно другие. То, чем мы занимаемся целыми днями — меняет нас кардинально, и самое страшное — незаметно.Работа в «желтой» прессе — не исключение. Сначала ты привыкаешь к цинизму и пошлости, потом они начинают выгрызать душу и мозг. И сколько бы ты не оправдывал себя тем что это бизнес, и ты просто зарабатываешь деньги, — все вранье и обман. Только чтобы понять это — тоже нужны и время, и мужество.Моя книжка — об этом. Пять лет руководить самой скандальной в стране газетой было интересно, но и страшно: на моих глазах некоторые коллеги превращались в неопознанных зверушек, и даже монстров, но большинство не выдерживали — уходили.
Эта книга воссоздает образ великого патриота России, выдающегося полководца, политика и общественного деятеля Михаила Дмитриевича Скобелева. На основе многолетнего изучения документов, исторической литературы автор выстраивает свою оригинальную концепцию личности легендарного «белого генерала».Научно достоверная по информации и в то же время лишенная «ученой» сухости изложения, книга В.Масальского станет прекрасным подарком всем, кто хочет знать историю своего Отечества.
В книге рассказывается о героических боевых делах матросов, старшин и офицеров экипажей советских подводных лодок, их дерзком, решительном и искусном использовании торпедного и минного оружия против немецко-фашистских кораблей и судов на Севере, Балтийском и Черном морях в годы Великой Отечественной войны. Сборник составляют фрагменты из книг выдающихся советских подводников — командиров подводных лодок Героев Советского Союза Грешилова М. В., Иосселиани Я. К., Старикова В. Г., Травкина И. В., Фисановича И.
Встретив незнакомый термин или желая детально разобраться в сути дела, обращайтесь за разъяснениями в сетевую энциклопедию токарного дела.Б.Ф. Данилов, «Рабочие умельцы»Б.Ф. Данилов, «Алмазы и люди».