В поисках частицы Бога, или Охота на бозон Хиггса - [35]
По мере того как ускорители становились все более мощными, появлялись и новые технические проблемы. Действительно, частицы внутри установки разгонялись почти до скорости света. В таких условиях дальнейшее увеличение энергии мало что давало в смысле увеличения скорости. Вместо этого (и в соответствии с теорией относительности Эйнштейна) дополнительная энергия изменяла орбиты частиц, и для сохранения постоянной длины траектории ученые ввели в систему электрические поля переменной частоты. Эти более современные установки, получившие название синхроциклотроны, стали следующим поколением ускорителей>98.
Во время холодной войны соревнование в строительстве гигантских ускорителей частиц в США и Советском Союзе шло параллельно с состязанием в космических исследованиях. Оба государства считали необходимым вкладывать деньги в строительство ускорителей, ведь все помнили, что именно знание структуры атома в конце концов обеспечило создание атомной бомбы и победу союзников во Второй мировой войне. Получение информации об атоме и энергии, заключенной внутри его, было вопросом национальной безопасности, и ведущие страны мира продолжали гонку, практически не считаясь с затратами. Когда одна строила огромный ускоритель, другая старалась построить еще больший.
1950-е годы были периодом расцвета ядерной физики: строились большие ускорители, более десятка уже работали или сооружались в разных странах. В Брукхейвенской национальной лаборатории на Лонг-Айленде (районе Нью-Йорка) работал ускоритель “Космотрон” с энергией частиц 3 ГэВ. В Беркли, близ Сан-Франциско, на ускорителе “Беватрон” была достигнута рекордная энергия 6,2 ГэВ. В 1957 году СССР ответил запуском ускорителя в Дубне — городке, расположенном к северу от Москвы, на котором пучки частиц разгонялись до энергий 10 ГэВ. В том же году СССР запустил первый в мире искусственный спутник. Это произошло через тридцать лет после того, как Уолтон и Кокрофт построили свой первый ускоритель. К этому времени ученые уже научились разгонять частицы до энергий в 50 000 раз выше, чем на первых установках.
Огромные средства, инвестированные в ускорители в США и СССР, создали серьезную проблему для Европы, где наука после войны находилась в глубоком кризисе. Основные открытия в ядерной физике и физике элементарных частиц делались американскими и советскими учеными, а европейские физики теряли квалификацию или уезжали в основном в США, вливаясь в армию американских специалистов>99.
Озабоченность по поводу будущего европейской науки побудила ведущих ученых, в том числе двух нобелевских лауреатов француза Луи де Бройля и американца Исидора Раби, — лоббировать проект строительства огромной многонациональной лаборатории. Ее целью, говорили они, станет развитие сотрудничества между различными странами и возвращение европейских ученых на передовые позиции физики. Несколько встреч в начале 1950-х годов привели к тому, что для рассмотрения проектов был создан временный Европейский совет по ядерным исследованиям (Counseil Europeenne pour la Recherche Nucleaire) — ЦЕРН. В 1954 году двенадцать европейских стран ратифицировали решение о создании Европейской организации по ядерным исследованиям, которая должна была базироваться близ Женевы, в Швейцарии.
Европейская лаборатория была очень амбициозным проектом. Первый основной ускоритель в ЦЕРНе, протонный синхротрон, был шириной в 200 метров и едва умещался на футбольном поле. 24 ноября 1959 года в 19.35 ускоритель разогнал протоны до рекордной энергии 24 ГэВ — этот знаменательный момент в истории ЦЕРНа отмечен в лабораторном журнале. На следующее утро Джон Адамс, будущий генеральный директор ЦЕРНа, объявил об успехе, сжимая в поднятой руке пустую бутылку из-под водки>100. Эту бутылку водки прислали ученые из Дубны — с условием, что их европейские коллеги разопьют ее только тогда, когда ЦЕРН побьет рекорд дубнинцев. В тот же день Адамс отослал бутылку обратно, только вместо водки там лежал поляроидный снимок с экрана дисплея, демонстрирующий сгусток летящих протонов с энергией 24 ГэВ.
ЦЕРН стал поистине центром притяжения для всех европейских физиков, занимающихся элементарными частицами. Но строительство самого ускорителя было только половиной дела. Прежде чем использовать установку в качестве научного инструмента, физики должны были построить и установить детекторы, позволяющие увидеть, что происходит, когда частицы с высокими энергиями врезаются в материал мишеней. Детекторы имели специальную конструкцию для обнаружения новых явлений, таких как нейтральные токи или W-частицы. Это были сложнейшие инженерные сооружения, и, чтобы их сконструировать и построить, понадобились годы.
Однако и по другую сторону Атлантики тоже не спали. Пока в ЦЕРНе осваивали свой, церновский, ускоритель, в США вводились в строй научные центры с оборудованием стоимостью много миллионов долларов, и размеры американских ускорителей измерялись в милях и километрах, а не в футах и метрах. В Менло-Парке, в Стэнфорде, был запущен трехкилометровый линейный ускоритель, а примерно в сорока милях к западу от Чикаго, в прериях, на площади 6800 гектаров строился другой крупный объект — Национальная ускорительная лаборатория, Фермилаб.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.