В поисках частицы Бога, или Охота на бозон Хиггса - [34]
Слова Резерфорда были услышаны. Вскоре в Кавендише ирландский физик Эрнест Уолтон и его коллега, йоркширец Джон Кокрофт, начали собирать установку, на которой планировалось получать пучки частиц, не используя радиоактивные материалы. Установка была еще несовершенна, но она работала! На одном конце Уолтон и Кокрофт установили стеклянную колбу, заполненную водородом. Приложенное к стенкам колбы напряжение выдирало электроны из атомов водорода, оставляя внутри сосуда голые ядра водорода, то есть протоны>96. Положительно заряженные протоны ускорялись другим напряжением, приложенным к торцам 8-метровой трубы, состыкованной с колбой. Идея состояла в том, чтобы ускоренные в трубе протоны врезались в объект, поставленный на их пути.
Уолтон и Кокрофт подумали и о технике безопасности. Во время тестирования установки они забрались в сделанное ими небольшое деревянное укрытие в центре лаборатории, обложенное свинцом для экранирования. Устройство Уолтона и Кокрофта стало, как Резерфорд и предполагал, очень полезным инструментом. В 1932 году физики направили поток частиц из этого протоускорителя на литий, самый легкий из металлов. Пучок протонов врезался в мишень и раскалывал атомы лития на две части. Уолтон и Кокрофт получили Нобелевскую премию на двоих в 1951 году за изобретение метода ускорения частиц и расщепление атома.
Расщепление атома было эпохальным достижением, но, чтобы раздробить атомы на еще более мелкие составляющие и изучить их, физикам требовались ускорители помощнее. Обычно ускоритель характеризуют величиной энергии частиц, которую они приобретают в них. (Используемые в этой области единицы энергии называются электронвольтами (эВ), один электронвольт — количеств кинетической энергии, которое электрон получает, когда он ускоряется напряжением 1 вольт.) Электронвольт не очень большое количество энергии Требуется примерно 600 триллионов электронвольт, чтобы поднять монетку в один фунт стерлингов на миллиметр от земли. Чтобы расщепить атом требуется 100 000 эВ. А чтобы выбить электрон из атома, нужно только 14 эВ. Физики используют для описания энергии пучков обозначения, кратные тысячам электронвольт: кэВ — для тысяч, МэВ — для миллионов, ГэВ — для миллиардов, и ТэВ — для триллионов электронвольт.
Одной из неприятных проблем, преследовавших первых конструкторов ускорителей, было создание сильных электрических полей, необходимых для разгона частиц до более высоких скоростей. В принципе можно разогнать пучки частиц до каких угодно энергий, ускоряя их сильными полями на больших расстояниях. Физики попытались делать так, но эта идея провалилась: они научились получать огромные электрические поля, но через установку побежали искры — возникал пробой.
В то время как Уолтон и Кокрофт упорно трудились над усовершенствованием своего ускорителя на основе стеклянной трубы, американский физик Эрнест Лоуренс из Калифорнийского университета в Беркли придумал новую конструкцию, решившую проблему больших электрических полей>97. Он позаимствовал идею из статьи норвежского инженер Рольфа Видроу, опубликованной в немецком техническом журнале. Лоуренс не знал языка и не мог прочитать текст статьи он уловил смысл прост рассматривая рисунки. Вместо того чтобы ускояться, двигаясь в длинной прямой трубке, частицы раскручивались по спирали, ускоряясь на каждом витке. Соответственно в этой установке оказалось возможным использовать более слабые электрические поля.
Сконструированная Лоуренсом установка стала называться циклотронным ускорителем. Внутри установки размером с небольшую тарелку частицы двигались по кругу и ускорялись на каждом витке переменным электрическим полем. Это было похоже на то, как если бы вы раскручивали карусель все быстрее и быстрее, стоя рядом и каждые несколько секунд с силой подталкивая ее. Частицы, направляемые мощными магнитами, кружили внутри циклотрона и по мере получения импульсов раскручивались по спирали. Прошло не так много времени, и в ускорителе Лоуренса частицы уже разгонялись до энергий около 5 МэВ, в то время как Уолтон и Кокрофт смогли получить лишь 800 кэВ. Установка Лоуренса, которую сам он называл “протонной каруселью”, была не только более мощной, но и довольно компактной — она умещалась на его лабораторном столе.
Лоуренс построил целую серию циклотронов, причем каждый последующий был крупнее и мощнее предыдущего. Первый имел всего 5 дюймов в поперечнике, но к 1939 году циклотроны стали гораздо более громоздкими, к примеру, в это время был построен циклотрон-рекордсмен диаметром 5 футов. Лоуренс использовал свои циклотроны для бомбардировки протонами различных элементов, в результате чего возникали их радиоактивные изотопы. Именно эти его работы привели к применению радиоактивных веществ в медицине. Брат Лоуренса врач Джон Лоуренс с помощью радиоактивного фосфора лечил лейкемию. А вскоре его коллеги придумали, как использовать пучки нейтронов, полученные в циклотроне, для уничтожения раковых клеток в организме. В 1939 году Лоуренс получил Нобелевскую премию за создание циклотрона и открытия, сделанные с его помощью, в том числе за синтез технеция — первого искусственного элемента, элемента, не существующего в природе.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.