В поисках частицы Бога, или Охота на бозон Хиггса - [37]
Руководство проектом во время строительства и успешный пуск сделали Уилсона в Вашингтоне настоящим героем. Но триумф продлился недолго. После окончания работ осталось 6 млн долларов, и Уилсон решил, что нет ничего предосудительного в том, чтобы потратить их на строительство не большого бустерного ускорителя (ускорителя-инжектора), который мог бы удвоить энергию пучков в ускорителе. Когда в Вашингтоне стало известно об этих планах, почему-то никто в восторг не пришел. Уилсона стали донимать звонками. Не помогло и то, что он даже спрятал телефон в своем кабинете>103.
В начале 1970-х ЦЕРН и Национальная ускорительная лаборатория в Чикаго впервые сравнялись в шансах выиграть гонку. У американских физиков было намного больше опыта, зато их лаборатория была хуже оснащена — при строительстве руководство старалось сэкономить деньги. В ЦЕРНе же европейские ученые по-прежнему сражались за новые технологии и отчаянно пытались вернуть себе достойное место в научной мировой элите. В обеих лабораториях главным приоритетом стали поиски доказательств теории электрослабых взаимодействий.
Физики и в ЦЕРНе и в Национальной ускорительной лаборатории проводили похожие эксперименты. В обоих ускорителях создавались пучки частиц, называемых нейтрино, которые перемещаются со скоростями близкими к скорости света и проходят через обычное вещество почти не рассеиваясь. Теоретики рассчитали, что в тех крайне редких случаях, когда нейтрино непосредственно налетает на другую частицу, оно отскакивает от нее, причем на картине треков можно будет увидеть про явление электрослабого взаимодействия.
В ЦЕРНе надежды на открытие возлагались на команду, возглавляемую французским физике Андре Лагарригом, и на ее 5-метровый детектор “Гаргамель”. названный в честь матери великана Гаргантюа. героя знаменитого романа Франсуа Рабле, написанного в XVI веке. “Гаргамель” принадлежал к типу детекторов, называемых пузырьковыми камерами. Благодаря их изобретению физики получили множество прекрасных изображений треков частиц. “Гаргамель” подготовили к работе, заполнив камеру 4,5 тонны фреона жидкостью, которая циркулирует и в холодильниках. Во время эксперимента большой поршень, присоединенный к камере “Гаргамели”, вытягивался, чтобы уменьшить давление внутри детектора. При этом фреон переходил в нестабильное состояние, возникающее вблизи точки кипения. Если нейтрино врезался в электрон внутри детектора, отрикошетивший электрон пролетал через фреон, оставляя след в виде цепочки пузырьков на своем пути. С помощью триггера включалась лампа-вспышка, и след движущейся частицы снимался на пленку.
Эксперименты на “Гаргамели” шли с осени 1972 года до весны 1973-го. То там, то здесь фотографии с детектора демонстрировали треки, похожие на треки от нейтральных токов, предсказанных в электрослабой теории>104. Однако большинство ученых в ЦЕРНе все же не были уверены в правильности такой интерпретации. Многие тогда считали, что вероятность появления нейтральных токов столь мала, что их вряд ли когда-нибудь удастся увидеть.
В декабре Франц Йозеф Хасерт, аспирант Ахенского университета (Германия), просматривал снимки, сделанные в ходе эксперимента на Гаргамели”. Вдруг на одной из фотографий он заметил необычный спиральный след, обладающий всеми при знаками нейтрального тока. Хасерт показал снимок своему научному руководителю, а тот — Фейснеру, главе команды “Гаргамель” в Ахене. Фейснер сразу понял: это именно то, чего они все так ждали! Через несколько дней он положил фотографию в портфель и полетел в Англию, показывать ее Дональду Перкинсу, члену команды “Гаргамели” из Оксфордского университета.
В экспериментах на “Гаргамели” физики сделали 1,4 миллиона фотографий треков частиц. И среди этого огромного количества снимков можно было, как посчитали ученые, найти где-то от пяти до тридцати треков, вызванных нейтральными токами. Каждую фотографию следовало детально рассмотреть на световом столе. Это была утомительная, скучная, но необходимая работа. “Легко представить, что это был за кошмар”, — говорил позже Перкинс. К декабрю команда “Гаргамели” просмотрела только 100 000 снимков. Со временем они изучили и оставшиеся 1,3 миллиона. И нашли всего два изображения, похожие на следы нейтральных токов.
В начале следующего года Фейснер написал письмо Лагарригу, описывая полученное изображение: “Эта картинка нас сильно возбудила. На ней был достойнейший кандидат на роль нейтрального тока”. Однако как ни убедителен был снимок, физики в ЦЕРНе знали — им нужно получить еще много подобных фотографий, чтобы твердо знать, они видят те самые нейтральные токи. Но ученые уже почувствовали пьянящий запах близкого открытия...
Они вытащили свои старые пленки и принялись перепроверять изображения, чтобы убедиться, что ничего не пропустили. К делу подключились команды из других европейских стран. Для удобства фотографии сильно увеличивали, и теперь каждый мог их рассмотреть. Стоя вокруг стола, на котором лежала обсуждаемая фотография, физики спорили о происхождении какой-нибудь подозрительной полоски или симпатичного завитка. Это нейтральный ток или нечто другое? Если возникали сомнения, изображение тут же забраковывалось и откладывалось в сторону
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.