В поисках бесконечности - [10]
Рис. 2
У других треугольников избыток суммы углов был бы другой. Например, у треугольника ABD (рис. 2, б) углы B и D равны 90°, а угол BAD равен 180°. Сумма углов этого треугольника равна 360° — на 180° больше, чем нужно. В дальнейшем число α+β+γ — 180°, где α, β, γ — углы сферического треугольника, мы будем для краткости называть избытком сферического треугольника.
Поворот параллельных.
Но не только наличие избытка у треугольников показало жителям Ялмеза, что они живут не на плоскости, а на кривой поверхности. Неверной оказалась и теорема Пифагора. Например, у треугольника ABC угол А равен 90°, а все его стороны равны друг другу. Вообще, здесь трудно разобрать, где гипотенуза, а где катеты — все углы прямые.
К неожиданным результатам привело и изучение параллельных прямых на поверхности планеты. Ведь если провести на плоскости замкнутую линию, а потом перемещать вдоль нее отрезок так, чтобы он оставался все время параллелен самому себе, то отрезок вернется в исходную точку, не изменив направления (рис. 3, а). Измерения на малых участках поверхности планеты, казалось бы, подтверждали этот результат (параллельными ялмезяне считали прямые, перпендикулярные одной и той же прямой).
Рис. 3
Ио измерения больших участков поверхности привели совсем к иным результатам. Возьмем, например, треугольник ABC (рис. 3, б) и проведем в точке A "отрезок", перпендикулярный AB. Будем переносить этот отрезок вдоль контура треугольника ABC, следя за тем, чтобы он оставался все время параллельным самому себе. Когда мы придем в точку B, то получим отрезок, направленный по экватору. Так как экватор сам является "прямой", то после параллельного переноса в точку C отрезок снова будет направлен по экватору. А когда мы перенесем его еще по меридиану CA, то получим отрезок, повернутый на 90° относительно первоначального направления (то есть как раз на величину избытка треугольника ABC). А если бы мы переносили отрезок по контуру треугольника ABD на рис. 2, б, то он повернулся бы на 180°.
Вообще, при параллельном переносе по контуру любого сферического треугольника отрезок поворачивается на угол, равный избытку этого треугольника. Любопытный результат получается, если переносить отрезок вдоль экватора. На первый взгляд кажется, что он возвратится в исходную точку, не повернувшись. Но это неверно. Если все время сносить движущийся отрезок в одну и ту же точку — полюс сферы, то мы увидим, что он повернулся на 360° (рис. 4). Но это и неудивительно. Дополним экватор дугой меридиана АВ, пробегаемой в обоих направлениях. Мы получим "треугольник" ABA. В этом треугольнике два угла прямые, а третий равен 360°. Поэтому и его избыток равен 360°.
Рис. 4
Измерение кривизны.
Итак, измеряя сумму углов треугольника, наблюдая за поворотом параллельных при переносе по замкнутому контуру, проверяя теорему Пифагора, жители планеты убедились, что они живут не на плоскости, а на какой-то искривленной поверхности. За меру кривизны некоторого участка поверхности они приняли угол поворота отрезка, параллельно перенесенного вдоль границы этого участка. Эту кривизну можно было считать и по-другому: разбить участок на треугольники и сложить избытки всех треугольников. Ведь, если два треугольника объединяются в один, то их избытки складываются.
Оказалось, что чем больше площадь участка, тем сильнее он искривлен. Точнее говоря, избыток любого треугольника оказался пропорционален его площади:
α + β +γ — π = kS(1)
мы будем измерять углы не в градусах, а в радианах; при таком измерении сумма углов плоского треугольника равна π). Отсюда был сделан вывод, что кривизна поверхности на единицу площади всюду одна и та же. Число к и приняли за меру кривизны.
Но среди всех поверхностей есть только одна поверхность, для которой избыток треугольника на единицу площади всегда один и тот же — это сфера. Поэтому геометры Ялмеза установили, что они живут на сфере, а не на какой-нибудь другой поверхности. Без особого труда удалось даже найти радиус этой сферы. Ведь если число к не зависит от выбора треугольника, его достаточно подсчитать для одного треугольника. Возьмем, например, треугольник ABC на рис. 2, а. Его избыток равен 90°, или, в радианной мере, >π/>2. Площадь же этого треугольника равна >1/>8 площади сферы, то есть >πR2/>2. Подставляя эти значения в формулу (1), получаем, что k = >1/>R>2, а потому для любого сферического треугольника
α + β +γ — π =>S/>R>2,
где α, β, γ — его углы, S — площадь и R — радиус сферы. Полученная формула позволяет определить радиус сферы путем измерения углов и площади треугольника. Разумеется, этот способ не очень удобен, так как требует весьма большой точности измерения углов. Для измерения радиуса Земли прибегли к иному способу — измерению длины дуги меридиана, что потребовало наблюдений за звездами.
Гауссова кривизна.
Формула (1) определяет кривизну к поверхности сферы, отнесенную к единице площади. Как мы видели, она равна >1/>R>2. Иными словами, чем больше радиус сферы, тем меньше искривлен участок ее поверхности, имеющий единичную площадь; поверхность мяча искривлена гораздо больше, чем поверхность Земли.
Как происходит дыхание? Почему нам порой не хватает воздуха и какое отношение имеет к этому маленькая Русалочка? Как наши эмоции влияют на дыхание? Почему мы кашляем, но не чувствуем боли в дыхательных путях? Может ли вырасти новое легкое? Как самый большой орган нашего тела защищается от микробов и вредных веществ. И самое главное: что мы можем предпринять, чтобы этот чудесный орган сохранял свою работоспособность всю жизнь? Обо всем этом увлекательно и захватывающе повествует специалист по легким Кай-Михаэль Бе. Для широкого круга читателей.
Книга основателя Игнобелевской (Шнобелевской) премии — сборник эссе о самых разных исследованиях вполне почтенных ученых. Только вот предмет этих исследований заставляет читателей сначала рассмеяться, а потом задуматься о весьма серьезных вещах. Почему чаще всего крадут книги по этике? Как найти оптимальный способ нарезки ветчины с помощью математики? Отчего танцоры в Вегасе получают большие чаевые в определенные месяцы? И какое ухо лучше распознает ложь — правое или левое? Абрахамс рассказывает о подобных довольно странных исследованиях в области биологии, физики, математики и других наук с большим юмором, иронией и — глубоким знанием человеческой природы.
Книга рассказывает о поразительных явлениях на водных пространствах нашей планеты. Существуют ли подводные чудовища, гигантские кальмары и змеи, 20-тонные медузы? Каково их происхождение? Почему этих тварей так редко видят? Это лишь небольшая часть вопросов, затронутых в книге.
Зарождение и развитие капитализма сопровождалось как его циклическими кризисами, так и его возрождениями в новых обличьях. Однако в реалиях XXI века капиталистическая система, по мнению Пола Мейсона, более не способна адаптироваться к новым вызовам, что означает ее фактический крах. Раз так, то главный вопрос: каким может быть будущее, если капиталистические перспективы неутешительны? Есть ли шанс создать новую стабильную и социально ориентированную глобальную финансовую систему? В своем исследовании Пол Мейсон в качестве альтернативы предлагает модель «посткапитализма», основы которой можно найти в современной экономической системе, и они даже сосуществуют с ней.
«Настоящая книга представляет собою сборник новелл о литературных выдумках и мистификациях, объединенных здесь впервые под понятиями Пера и Маски. В большинстве они неизвестны широкому читателю, хотя многие из них и оставили яркий след в истории, необычайны по форме и фантастичны по содержанию».
О пути, который прошла Русь на протяжении XIII–XV веков, от политической раздробленности накануне татаро-монгольского нашествия до победы в Куликовской битве и создания централизованного Русского государства, рассказывают доктор исторических наук И. Б. Греков и писатель Ф. Ф. Шахмагонов. Виктор Иванович Буганов — известный советский ученый, доктор исторических наук, заведующий отделом источниковедения Института истории СССР Академии наук СССР. Его перу принадлежит более 300 научных работ, в том числе пять монографий, и научно-популярные книги.
Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.
Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.
В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.