В небе завтрашнего дня - [22]

Шрифт
Интервал

Мы знаем, однако, случаи, когда давление воздуха в результате действия скоростного напора может повыситься в десятки и даже сотни раз. Таково именно сжатие встречного потока самолетом при сверхзвуковой скорости. Значит, и повышение температуры воздуха при этом тоже должно быть гораздо большим.

Действительно, если внезапно затормозить воздушный поток, движущийся вдвое быстрее, чем звук в воздухе, то его температура увеличится на 230°, а при скорости в 10 раз большей скорости звука это увеличение составит почти 5800°!

Измерения показывают, что это действительно так. Передняя кромка крыла самолета все время как бы рассекает поток раскаленного воздуха. Если не принять специальных мер, то она быстро расплавится.

Но ведь известно, что металл хорошо проводит тепло. Значит, передние части крыла, соприкасающиеся с горячим воздухом, будут быстро отдавать тепло другим частям крыла, расположенным сзади, где торможения нет и крыло обдувается холодным воздухом.

Увы, это не так. Воздух оказывается более «коварным», чем хотелось бы. Он сообщает тепло всем частям быстролетящего самолета, а не только передним. Весь самолет оказывается окруженным оболочкой, рубашкой раскаленного воздуха. Самолет, летящий с высокой скоростью, нигде не встречается с холодным окружающим воздухом.

Но если спереди воздух нагревается из-за сжатия при его торможении, то отчего он нагревается сзади* где торможения и, значит, сжатия нет?

Здесь придется рассказать еще об одном свойстве воздуха — его вязкости.

Мы знаем так называемые вязкие жидкости — густой вар, мед, смолу. В отличие от воды или керосина эти жидкости тягучи, текут медленно, их частицы как бы связаны друг с другом. Так и есть на самом деле — именно межмолекулярные силы сцепления делают такие жидкости вязкими.

Но воздух? Разве воздух похож на смолу?

Да, похож.

Конечно, силы связи между частицами воздуха неизмеримо меньше, чем в смоле, но они все же есть. И бывают случаи, когда они обнаруживают себя сильнее, заметнее. Таким случаем и является полет скоростного самолета.

Когда в воздухе движется какое-нибудь тело, оно уносит с собой частицы воздуха, непосредственно прилегающие к его поверхности. Эти частицы как бы прилипают к поверхности тела и остаются неподвижными относительно нее.

Ну, а следующий слой воздуха, соседний с этим первым, будет обладать полной скоростью потока, то есть той скоростью, с которой движется тело? И все остальные слои воздуха тоже? Тогда скольжение воздушных слоев будет происходить только непосредственно у самой поверхности тела, там где самый первый, неподвижный слой соседствует со следующим, обладающим полной скоростью потока?

Да, дело обстояло бы именно так, если бы воздух не обладал вязкостью, если бы между частицами воздуха не существовало сил сцепления, которых мы обычно не замечаем. В действительности же частицы тончайшего слоя воздуха, непосредственно прилегающего к слою «прилипшему», застывшему на поверхности движущегося тела, будут притягиваться к частицам этого неподвижного слоя. Поэтому они не смогут двигаться с прежней скоростью, то есть с полной скоростью потока относительно тела. Их скорость будет значительно меньше.

Но то же самое произойдет и с частицами следующего слоя, прилегающего уже не к неподвижному, а к соседнему с ним слою, движущемуся с малой скоростью. Понятно, что скорость частиц этого второго слоя будет уже несколько больше.

Так от слоя к слою будет расти скорость частиц воздуха, пока на некотором расстоянии от поверхности тела она не станет практически равной скорости так называемого свободного потока относительно тела, или, что все равно, скорости самого движущегося тела. В отличие от этого свободного потока, прилегающие к поверхности слои воздуха называют пограничным слоем.

Легко видеть, какое огромное влияние оказывают свойства пограничного слоя на характер движения тела. По существу, изучение пограничного слоя — главное в аэродинамике.

В частности, например, особый интерес в последнее время вызывает проблема управления пограничным слоем на крыле самолета. С помощью специальных щелей можно изменять свойства пограничного слоя на поверхности крыла, если через эти щели подавать изнутри воздух под давлением или, наоборот, отсасывать воздух из пограничного слоя внутрь крыла. Управление пограничным слоем, проблему которого сейчас решают ученые, намного улучшит летные характеристики самолета и, несомненно, найдет широкое применение в авиации будущего 1*.

Но нас сейчас интересует другое. Если в пограничном слое скорость движения частиц воздуха уменьшается из-за силы вязкости, значит, их кинетическая энергия уменьшается, как и при простом торможении. Куда же она девается? Ведь исчезнуть энергия не может? Нет. Она переходит в тёпло, точно так же, например, как переходит в тепло работа трения твердых тел.

Значит, вся поверхность быстродвижущегося тела оказывается окруженной раскаленным воздухом. Правда, температура задней кромки крыла будет несколько меньше, чем передней. Ведь спереди воздух останавливается, тормозится полностью, а сзади его скорость лишь постепенно уменьшается до нуля. Но все же спасительной отдачи воздуху тепла от задней поверхности крыла не происходит.


Еще от автора Карл Александрович Гильзин
Путешествие к далеким мирам

В книге рассказывается о том, как создавалась астронавтика — наука о межпланетных сообщениях, об основах этой науки, ее удивительном настоящем и увлкательном будущем. В ней говорится о многочисленных невиданных трудностях, стоящих на пути человека в Космос, и о том, как наука и техника преодолевают эти трудности, как готовится полет человека в космическое пространство.


Ракетные двигатели

В книге в популярной форме изложены принципы работы и устройства ракетных двигателей, работающих на твердом и жидком топливе. Приведено описание двигателей дальнобойной ракеты и ракетного самолета. Рассмотрены возможности, связанные с применением ракетных двигателей в авиации и артиллерии. Указаны пути и перспективы дальнейшего развития ракетных двигателей.


Воздушно-реактивные двигатели

Из введения: ...В книге будет рассказано также о том, какие интересные и сложные физические процессы происходят при работе воздушно-реактивных двигателей и как ученые и инженеры овладевают и управляют этими процессами, вписывая блестящие страницы в историю борьбы за овладение силами природы и покорение их человеком; о том, как устроены различные воздушно-реактивные двигатели, каковы их характеристики и их место в авиации настоящего и будущего; о тех замечательных перспективах, которые открываются перед реактивной авиацией будущего, и о том, как ученые и конструкторы борются сегодня за то, чтобы возможное стало действительным...


Эта удивительная подушка

В книге рассказывается о самых различных применениях воздушной подушки в настоящее время и в будущем: о летающих автомобилях, судах и поездах, о воздушных домах, о городах под куполом и многом другом.


Рекомендуем почитать
Юрий Гагарин. Первый полёт в документах и воспоминаниях

12 апреля 1961 года — самая светлая дата в истории XX века. В тот день советский летчик Юрий Алексеевич Гагарин обогнул Землю на космическом корабле «Восток», открыв человечеству дорогу к звездам. Биография первого космонавта и его орбитальный рейс хорошо изучены, однако за минувшие десятилетия они обросли множеством мифов. Правдивые воспоминания очевидцев и новейшие рассекреченные документы, собранные в этой книге, позволяют вернуть историческую правду. Они наглядно показывают, сколь значительные трудности пришлось преодолеть Юрию Гагарину на пути к заветной цели.


Электричество в 2000 году

Статья, дающая смелый прогноз развития электротехники, транспорта, энергетики на 70 лет вперед. Напечатана 15 февраля 1927 года в газете "Харьковский пролетарий". Перевод с французского.


Часы и время

Что такое время? Странный вопрос. Ведь это каждый знает. Все только и говорят о нем. «Катастрофически не хватает времени», — жалуются одни. «Как медленно течет время», — говорят другие, когда приходится чего-то или кого-то ждать. То и дело можно слышать вопрос: «Который час?» или (что не очень правильно) «Сколько сейчас времени?»А между тем еще в древности один философ сказал: «Я прекрасно знаю, что такое время, пока не задумываюсь об этом. Но стоит мне задуматься, и я не могу ответить».С тех пор как были сказаны эти слова, прошло много лет, но до сих пор далеко не все тайны времени разгаданы.


Беседы о физике и технике

В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.


"Наутилусы" наших дней

Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.