В небе завтрашнего дня - [21]

Шрифт
Интервал

Но нет сомнения, что они будут сделаны, наука не терпит тайн и недомолвок. Штурм этой загадки природы уже ведется. Возможно, уже сейчас в лаборатории какого-нибудь ученого намечается решение увлекательной задачи…

И когда появится эта новая область науки — будет ли это «электрогравитика», как ее любят называть некоторые скороспелые прогнозисты, или какая-нибудь иная — только тогда все разговоры о союзе с тяжестью приобретут твердую научную основу. И только тогда «антигравитационные» двигатели самолетов и космических кораблей сделают их истинными властителями воздушного пространства. Впрочем, не только это. Управление тяжестью революционизирует всю технику, промышленность, строительство. Претерпит кардинальные изменения вся материальная культура.

Так будущее авиации еще теснее сплетается с судьбами человечества.

Часть вторая. В небе будущего

Глава VII. От «звукового» к «тепловому барьеру»

В этой главе рассказывается о том, какое грозное и неожиданное препятствие возникает при дальнейшем увеличении скорости полета.

С какой скоростью будут летать самолеты завтрашнего дня? 2000, 5000 или, может быть, 50 000 километров в час?

Чтобы летать со все большей скоростью, нужны все более мощные двигатели. Пока не появился турбореактивный двигатель, способный развивать при меньшем весе намного большую тягу, чем поршневой двигатель с винтом, авиации был не под силу «звуковой барьер». Теперь же авиация вышла на простор сверхзвуковых скоростей. Принципиально стали возможными сколь угодно большие скорости полета.

Значит, дело только во времени и, раньше или позже, наступит час, когда самолеты будут летать со скоростью 5000 километров в час. Ну, пусть не завтра и даже не послезавтра, но будут. А может быть, можно сразу совершить скачок с 2000 до 20 000 или 50 000 километров в час?

На этот вопрос, пожалуй, следовало бы ответить: и да и нет. «Да» — потому, что уже сейчас можно создать реактивный двигатель, который позволит развить такую скорость. «Нет» — потому, что такую скорость все же развить не удастся. Этому мешает обстоятельство, становящееся сейчас важнейшим препятствием на пути развития авиации.

Совсем недавно казалось: стоит преодолеть «звуковой барьер» — и дальше все должно пойти как по маслу. Но не тут-то было. Только- только взят «барьер звуковой», как на пути авиации уже возникает новый «барьер», неизмеримо более трудный, перед которым старый, «звуковой» кажется детской забавой.

Но ведь это значит, что силы авиации возросли и продолжают быстро расти. И теперь можно мечтать о победе над новым «барьером», куда более трудным.

Новый «барьер» на пути развития авиации, как и звуковой, связан со свойствами воздуха.

Наверное, большинству читателей приходилось накачивать велосипедную камеру или волейбольный мяч. И каждый при этом замечал, что насос начинает нагреваться. Тот его конец, к которому прикрепляется резиновый шланг, со временем становится очень горячим, причем нагревание особенно велико в тех случаях, когда человек не ленится и качает энергично.

Откуда появляется это тепло?

Очевидно, в тепло переходит работа, которую мы затрачиваем при накачивании, то есть при сжатии воздуха. Когда мы работаем энергичнее, то и тепла выделяется больше. Так здесь проявляется закон сохранения энергии.

И во всех других случаях, когда происходит быстрое сжатие воздуха, он нагревается. Вот почему, между прочим, воздушные компрессоры, которые подают сжатый воздух, обязательно должны иметь какое-нибудь охлаждение.

Своеобразным насосом или компрессором оказывается и быстролетящий самолет — он сжимает находящийся впереди него воздух. Сопротивление воздуха быстродвижущемуся предмету проявляется в том, что на передней поверхности этого предмета давление становится повышенным, большим, чем сзади. Разность давлений и приводит к появлению силы, которая ощущается как сопротивление встречного потока. Если, например, измерить давление воздуха у ветрового стекла быстродвижущегося автомобиля, то оно окажется большим, чем окружающее атмосферное давление. Это приращение давления называют динамическим давлением, или скоростным напором.

Такое повышение давления может быть и полезным и вредным. Лобовое сопротивление, которое оказывает воздух быстродвижущемуся автомобилю и, в особенности, самолету, вредно. Но тот же скоростной напор движет парусные суда, вращает крылья ветросиловых установок, позволяет создать прямоточный воздушно-реактивный двигатель и т. д.

Вред, связанный со скоростным напором, то есть со сжатием воз-/ духа, резко остановленного в своем беге, заторможенного, не ограничивается повышением давления. Мы уже знаем, что это увеличение давления неизбежно связано и с повышением температуры воздуха (вспомните велосипедный насос).

Действительно, точное измерение температуры воздуха перед ветровым стеклом быстродвижущегося автомобиля показало бы, что эта температура тоже чуть выше, чем у окружающего воздуха. Правда, при тех скоростях, с которыми передвигаются автомобили, повышение температуры воздуха за счет торможения встречного потока составляет доли градуса. Но все же это повышение существует, и оно может быть измерено. Если оно невелико, то только потому, что и сжатие тоже мало.


Еще от автора Карл Александрович Гильзин
Путешествие к далеким мирам

В книге рассказывается о том, как создавалась астронавтика — наука о межпланетных сообщениях, об основах этой науки, ее удивительном настоящем и увлкательном будущем. В ней говорится о многочисленных невиданных трудностях, стоящих на пути человека в Космос, и о том, как наука и техника преодолевают эти трудности, как готовится полет человека в космическое пространство.


Ракетные двигатели

В книге в популярной форме изложены принципы работы и устройства ракетных двигателей, работающих на твердом и жидком топливе. Приведено описание двигателей дальнобойной ракеты и ракетного самолета. Рассмотрены возможности, связанные с применением ракетных двигателей в авиации и артиллерии. Указаны пути и перспективы дальнейшего развития ракетных двигателей.


Воздушно-реактивные двигатели

Из введения: ...В книге будет рассказано также о том, какие интересные и сложные физические процессы происходят при работе воздушно-реактивных двигателей и как ученые и инженеры овладевают и управляют этими процессами, вписывая блестящие страницы в историю борьбы за овладение силами природы и покорение их человеком; о том, как устроены различные воздушно-реактивные двигатели, каковы их характеристики и их место в авиации настоящего и будущего; о тех замечательных перспективах, которые открываются перед реактивной авиацией будущего, и о том, как ученые и конструкторы борются сегодня за то, чтобы возможное стало действительным...


Эта удивительная подушка

В книге рассказывается о самых различных применениях воздушной подушки в настоящее время и в будущем: о летающих автомобилях, судах и поездах, о воздушных домах, о городах под куполом и многом другом.


Рекомендуем почитать
Юрий Гагарин. Первый полёт в документах и воспоминаниях

12 апреля 1961 года — самая светлая дата в истории XX века. В тот день советский летчик Юрий Алексеевич Гагарин обогнул Землю на космическом корабле «Восток», открыв человечеству дорогу к звездам. Биография первого космонавта и его орбитальный рейс хорошо изучены, однако за минувшие десятилетия они обросли множеством мифов. Правдивые воспоминания очевидцев и новейшие рассекреченные документы, собранные в этой книге, позволяют вернуть историческую правду. Они наглядно показывают, сколь значительные трудности пришлось преодолеть Юрию Гагарину на пути к заветной цели.


Электричество в 2000 году

Статья, дающая смелый прогноз развития электротехники, транспорта, энергетики на 70 лет вперед. Напечатана 15 февраля 1927 года в газете "Харьковский пролетарий". Перевод с французского.


Часы и время

Что такое время? Странный вопрос. Ведь это каждый знает. Все только и говорят о нем. «Катастрофически не хватает времени», — жалуются одни. «Как медленно течет время», — говорят другие, когда приходится чего-то или кого-то ждать. То и дело можно слышать вопрос: «Который час?» или (что не очень правильно) «Сколько сейчас времени?»А между тем еще в древности один философ сказал: «Я прекрасно знаю, что такое время, пока не задумываюсь об этом. Но стоит мне задуматься, и я не могу ответить».С тех пор как были сказаны эти слова, прошло много лет, но до сих пор далеко не все тайны времени разгаданы.


Беседы о физике и технике

В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.


"Наутилусы" наших дней

Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.