В небе завтрашнего дня - [10]
10* Конечно, такую тягу он разовьет только при полете у земли, в плотном воздухе. На больших высотах, где подобный высокоскоростной полет только и возможен, тяга будет несравненно меньше.
11* Например, снаряд «Бомарк», США (по журналу «Авиэйшн Уик», 10 ноября 1958 г., и др.).
Возможная силовая установка самолета, состоящая из турбореактивного (вверху) и прямоточного (внизу) двигателей. Показана и заслонка, направляющая воздух в один из двигателей.
Но все же, как и в турбореактивном двигателе, именно температура газов ограничивает возможности использования прямоточного двигателя, именно она ставит предел достигаемой с его помощью скорости полета. Чтобы понять это, достаточно вспомнить, что сжатие воздуха связано с его нагревом. Очевидно, будет нагреваться и воздух, поступающий в прямоточный двигатель в полете, ибо этот воздух тоже сильно сжимается. Но характер такого нагрева оказывается действительно неожиданным: при скорости полета, вдвое превосходящей скорость звука, температура воздуха, поступающего в двигатель, составит примерно 250°, а при пятикратном превышении ее около 1500°! Значит, в прямоточный двигатель будет втекать струя воздуха, раскаленного гораздо сильнее, чем газы, поступающие на лопатки турбореактивного двигателя!
Ясно, что стенки прямоточного двигателя не в состоянии выдержать такую температуру, даже если они будут изготовлены из очень высококачественного жаропрочного материала. Значит, чем больше скорость полета, тем ближе температура входящего в двигатель воздуха к максимально допустимой и тем меньше возможный подогрев воздуха за счет сжигания в нем топлива. Когда температура воздуха приближается к предельной, двигатель может развивать лишь ничтожную тягу: ведь чтобы тяга была большой, в двигателе должно ежесекундно сгорать много топлива.
Как показывают расчеты, применение прямоточного двигателя возможно лишь до скорости полета, примерно в 4–5 раз превышающей скорость звука, то есть до скорости около 6000 километров в час. Большие скорости уже недоступны для него.
Правда, наука ведет поиск и в этом направлении, пытаясь отодвинуть предельную скорость, при которой еще могут найти применение воздушно-реактивные двигатели. В последнее время такая возможность начинает вырисовываться, и, нужно признаться, она кажется на первый взгляд по меньшей мере неожиданной. Действительно, использовать воздушно-реактивный двигатель при еще больших, так называемых гиперзвуковых скоростях полета, например, 10 000 километров в час или даже больше, принципиально можно, но ценой отказа от… воздушно-реактивного двигателя!
Секрет этого парадокса прост: в двигатель превращается в этом случае… крыло самолета. На самом деле, известно, что на нижней поверхности крыла давление всегда относительно повышено. При гиперзвуковых скоростях полета давление и температура воздуха под крылом могут быть очень высокими, гораздо большими, например, чем в камере сгорания обычного прямоточного двигателя. Если впрыснуть в этот раскаленный и сжатый воздух топливо, то оно, естественно, воспламенится. Вот и основа идеи: непосредственно из крыла самолета через форсунку, расположенные в его обшивке, вниз под крыло брызжут струи топлива. Оно воспламеняется и горит, раскаленные газы отбрасываются назад так, что создают реактивную тягу, да, кстати, и подъемную силу, если нужно. Мало похоже такое «горящее крыло», интенсивно исследуемое в настоящее время за рубежом 12*, на обычный прямоточный двигатель, но тем не менее это такой же полноправный двигатель, как и все другие. Таковы законы развития авиационной реактивной техники — двигатель все полнее сливается с самим самолетом, разделить их более нельзя.
Но и для подобных силовых установок существует предельно возможная скорость полета, связанная с температурными ограничениями. Еще большие скорости уже недоступны для воздушно-реактивных двигателей. Это — удел двигателей, не использующих атмосферный воздух, двигателей, способных работать на любых, самых больших высотах и вне атмосферы, в мировом пространстве.
Это — ракетные двигатели и прежде всего изобретенный К. Э. Циолковским жидкостный ракетный двигатель.
12* Об этом сообщает, например, журнал «Спейскрафт», сентябрь 1963 г., и др.
Глава IV. Двигатель-рекордист
В этой главе рассказывается об изобретенном Циолковским жидкостном ракетном двигателе, об одержанных им замечательных победах, о его необычайной «прожорливости» и роли в авиации будущего.
Чтобы двигатель не нуждался в окружающем нас воздухе, сгорание топлива в нем должно происходить без атмосферного кислорода. Известны многие примеры подобного сгорания. Вот взлетела пороховая ракета, оставляющая за собой длинный дымовой след. Порох сгорает, как известно, без воздуха, он может гореть и в абсолютном вакууме, и под водой. Плесните крепкой азотной кислотой на пролитый анилин — произойдет воспламенение, в котором воздух также не принимает никакого участия.
Особенно интересен для нас последний пример, когда одна жидкость горит в другой. Это явление и лежит в основе работы жидкостного ракетного двигателя. Одна из жидкостей — горючее: например бензин, керосин, спирт. Другая жидкость — окислитель: азотная кислота, жидкий кислород и др. Химическая реакция между горючим и окислителем приводит к бурному газообразованию с выделением большого количества тепла. Когда такая реакция происходит в камере сгорания жидкостного ракетного двигателя при давлении в десятки атмосфер и температуре, доходящей до 3000 и более градусов, то через сопло вытекают раскаленные газы со скоростью 2,5–3 километра в секунду. Сила реакции вытекающих из двигателя газов, то есть реактивная тяга жидкостного ракетного двигателя, оказывается достаточной для полета со скоростью, недостижимой для двигателей любого другого типа.
В книге рассказывается о том, как создавалась астронавтика — наука о межпланетных сообщениях, об основах этой науки, ее удивительном настоящем и увлкательном будущем. В ней говорится о многочисленных невиданных трудностях, стоящих на пути человека в Космос, и о том, как наука и техника преодолевают эти трудности, как готовится полет человека в космическое пространство.
В книге в популярной форме изложены принципы работы и устройства ракетных двигателей, работающих на твердом и жидком топливе. Приведено описание двигателей дальнобойной ракеты и ракетного самолета. Рассмотрены возможности, связанные с применением ракетных двигателей в авиации и артиллерии. Указаны пути и перспективы дальнейшего развития ракетных двигателей.
Из введения: ...В книге будет рассказано также о том, какие интересные и сложные физические процессы происходят при работе воздушно-реактивных двигателей и как ученые и инженеры овладевают и управляют этими процессами, вписывая блестящие страницы в историю борьбы за овладение силами природы и покорение их человеком; о том, как устроены различные воздушно-реактивные двигатели, каковы их характеристики и их место в авиации настоящего и будущего; о тех замечательных перспективах, которые открываются перед реактивной авиацией будущего, и о том, как ученые и конструкторы борются сегодня за то, чтобы возможное стало действительным...
В книге рассказывается о самых различных применениях воздушной подушки в настоящее время и в будущем: о летающих автомобилях, судах и поездах, о воздушных домах, о городах под куполом и многом другом.
Что такое время? Странный вопрос. Ведь это каждый знает. Все только и говорят о нем. «Катастрофически не хватает времени», — жалуются одни. «Как медленно течет время», — говорят другие, когда приходится чего-то или кого-то ждать. То и дело можно слышать вопрос: «Который час?» или (что не очень правильно) «Сколько сейчас времени?»А между тем еще в древности один философ сказал: «Я прекрасно знаю, что такое время, пока не задумываюсь об этом. Но стоит мне задуматься, и я не могу ответить».С тех пор как были сказаны эти слова, прошло много лет, но до сих пор далеко не все тайны времени разгаданы.
Издание предназначено для специалистов – занимающихся подготовкой и размещением заказов на проведение капитального и текущего ремонтов зданий и сооружений для государственных и муниципальных нужд. В издании рассматриваются вопросы обследования зданий, подготовки дефектных ведомостей, составления технического задания, подготовке и проверке (экспертизе) проектно – сметной документации.Особое внимание уделено основным аспектам составления проекта государственного (муниципального) контракта на выполнение работ по капитальному и текущему ремонту зданий и сооружений, в том числе порядку составления форм КС-2, КС-3 при бюджетном финансировании ремонтных работ.
В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.
Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.