В делении сила. Ферми. Ядерная энергия - [31]

Шрифт
Интервал

Таким образом, Ферми мог сосредоточиться на области, которая интересовала его больше всего,— на базовой физике. С 1943 по 1944 год он продолжал работать в Аргоннской лаборатории вместе с прежними коллегами: Андерсоном, с которым у него сложилось особое взаимопонимание, Джоном Маршаллом и Леоной Вудс (летом 1943 года она вышла замуж за Маршалла и взяла его фамилию). Ученые сдружились и часто проводили вместе то небольшое количество свободного времени, которым располагали. Также они совместно написали несколько статей о возможности замедления нейтронов с помощью графита.


[Чудо — это] любое явление с вероятностью ниже 20 %.

Ответ Ферми на вопрос о том, что он считает чудом


Технический прогресс позволил Ферми систематизировать анализ оптических свойств нейтронов, которому он посвятил несколько статей, написанных вместе с Зинном. Теперь он мог получить и правильно измерить коллимированные пучки нейтронов высокой интенсивности. Необходимо подчеркнуть, что открытие коллимированных пучков света, таких как лазер, произошло лишь 15 лет спустя, поэтому изучение свойств структуры материалов посредством коллимированных пучков нейтронов означало новую эру в физике твердых тел.

В июне 1944 года был закончен новый атомный реактор («Чикагская поленница — 3»), в котором вместо графита замедлителем выступала тяжелая вода. Вскоре Ферми использовал его для экспериментов с нейтронами и подробного анализа их свойств, таких как показатель преломления нейтронов в опытах по их рассеянию. Война обязывала заниматься определенными задачами, и от этого никто не мог уклониться. Без сомнения, Ферми обладал самым большим мировым авторитетом в своей области и периодически посещал «место X» в Ок-Ридже и Ханфорде, где компания DuPont конструировала реакторы, а также выступал главным консультантом Лос-Аламосской лаборатории по созданию реакторов.

В июле 1944 года Джулиус Роберт Оппенгеймер, руководивший проектом Y2 в Лос-Аламосе, несколько раз приезжал в Чикаго, чтобы убедить Ферми переехать в так называемое «место Y». У Оппенгеймера возникли различные сложности в ходе проектирования атомной бомбы, и на него начал оказывать давление сам президент. Он понимал, что сможет добиться успеха с помощью Ферми. Приказ был ясен: собрать в Лос-Аламосе как можно больше ученых и ускорить процесс создания атомной бомбы. У семьи Ферми не было выбора: им пришлось переезжать в Лос-Аламос. В конце августа Лаура с детьми отправились в «место Y», а Энрико задержался в Хэнфорде, помогая DuPont решить проблемы с новыми сборками. Прибыв в Лос-Аламос, Лаура обнаружила, что теперь стала женой Генри Фармера: в целях безопасности все ученые, занятые в проекте, и их родственники должны были сменить имя.

Всего за несколько недель до этого, 11 июля 1944 года, в Чикаго Лаура и Энрико поклялись в преданности Соединенным Штатам и получили американское гражданство. Произошло это через пять лет после их переезда в Америку. Когда новоиспеченный Генри Фармер приехал в Лос-Аламос, то увидел, что его семья живет в гораздо более скромных условиях, чем в Чикаго.

Общее руководство Манхэттенским проектом осуществлял Оппенгеймер, а Ферми был назначен одним из директоров. В частности, он отвечал за так называемый отдел F, названный так по первой букве его фамилии (и старой, и новой). Ум и всестороннее знание вопроса помогали ученому решать задачи, перед которыми пасовали работники остальных отделов. Именно в Лос-Аламосе Ферми впервые заинтересовался компьютерами. Для упрощения вычислений Николас Метрополис, Ричард Фейнман и особенно Джон фон Нейман занялись установкой и программированием новой электромеханической вычислительной машины, IBM. В ее задачи входило прогнозирование детонации бомб, и Ферми провел вместе с Андерсоном много часов, анализируя и испытывая новую технику.


АТОМНАЯ БОМБА

Идея, лежащая в основе атомной бомбы, была проста: надо было быстро собрать части вещества, способного к делению, так, чтобы при достаточной критической массе цепная реакция вышла из-под контроля и по достижении критического состояния высвободилось такое количество энергии за такое короткое время, чтобы произошел взрыв. Если энергия высвобождалась медленно, то взрыва не было: максимум получалась небольшая вспышка, которую словно бы испускает бракованная петарда. Если же, наоборот, цепная реакция начиналась раньше положенного времени, то бомба не достигала цели и могла поразить союзные войска.

В Лос-Аламосе было открыто, что для получения эффективной атомной бомбы нужно выстрелить тяжелым шаром урана-235 по ядру того же урана-235, чтобы детонация была достаточно быстрой, а цепная реакция не начиналась раньше времени, замедляя высвобождение энергии. Эта пушечная система впоследствии использовалась при создании ядерной бомбы для Хиросимы, но она работала недостаточно хорошо. Зато плутоний-239, производимый реакторами Хэнфорда, содержал нужное количество изотопов плутония-240, который распадался спонтанно, не вступая в цепную реакцию. Спонтанное деление плутония-240 приводило к преждевременной цепной реакции и вызывало дефективный взрыв. Проблема плутония-240 и его спонтанного деления так беспокоила Ферми, что Оппенгеймер начал сомневаться в том, что создать атомную бомбу вообще возможно. Ферми попробовал уменьшить количество плутония-240, производимого реакторами Хэнфорда, но результат оставался неудовлетворительным. В конце концов Сет Неддермейер понял, как создать плутониевую бомбу. Его идея состояла в том, чтобы получить сферический взрыв плутония. Для этого была важна концентрация материала, поскольку данный взрыв направлен внутрь. При помощи специалиста по взрывчатым веществам Георгия Кистяковского Неддермейер придумал, как добиться того, чтобы ударная волна конвенционального взрыва сжала плутониевый шар вдвое по сравнению с его обычным размером и быстрее, чем цепная реакция, вызванная пушечным методом (см. рисунок). Сжатая сфера плутония легко достигала надкритичности.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.