В делении сила. Ферми. Ядерная энергия - [29]
В 1941 году Ферми и Силард не без сложностей получили большие количества чистого графита и чистых минералов урана. Силард сам вел переговоры с американскими и канадскими компаниями, чтобы получить достаточное количество качественного материала, а Ферми проектировал уран-графитовый ядерный реактор, как он сам его назвал, пытаясь найти наилучшую геометрическую форму для обоих компонентов и разместить их так, чтобы получить самоподдерживающуюся цепную реакцию. Ученые знали, что чем больше размеры реактора, тем лучше протекает диффузия нейтронов и возрастает коэффициент размножения k>ef.
К сентябрю того же года лаборатория располагала шестью тоннами оксида урана (U>3O8) и 30 тоннами графитовых блоков. Учитывая размеры и вес материалов, Пеграму пришлось найти другое помещение для их хранения. Так была построена Шермерхорн Рум — квадратная камера со сторонами длиной 2,45 м и высотой 3,35 м с блоками графита и урана, вставленными в герметичные контейнеры, с источником нейтронов радия и бериллия высокой интенсивности у основания. Из-за огромных размеров этой «поленницы» Ферми в шутку говорил, что впервые ему удалось совместить свою страсть к физике и горам и «карабкаться по собственным устройствам». Нейтроны можно было обнаружить с помощью панелей из индия, распределенных по камере. Так появился первый экспоненциальный реактор Ферми. По расчетам ученого, коэффициент размножения нейтронов был равен 0,87, но результаты оказались на 13% меньше необходимого минимума для получения самоподдерживающейся цепной реакции.
Несмотря на итальянское происхождение, Ферми заслужил доверие Вэнивера Буша и был назначен руководителем проекта по разработке ядерного реактора в Чикаго. Как любой начальник управления или отделения, ученый начал, как он сам говорил, «заниматься физикой по телефону». Он руководил инженерами, строящими новый реактор, обучал своих сотрудников, писал отчеты для военных (60 из них были обнародованы). С марта по сентябрь 1942 года Ферми провел ряд семинаров для членов своей команды и для военных властей, проявив выдающиеся педагогические способности.
По приезде в Колумбийский университет он вместе с Андерсоном проанализировал поглощающие способности бора и кадмия. Реактор должен был иметь систему контроля, чтобы надкритическое состояние не было превышено, и для реализации такой системы Ферми выбрал аварийную кассету из кадмия, механизм действия которой хорошо знал. По настоянию ученого к нему в Чикаго в феврале 1942 года приехал Андерсон.
Ферми назначил его ответственным за контроль чистоты материалов. Ученые начали конструировать «поленницы» меньшего размера по сравнению с Колумбийской, так называемые сигма-призмы с квадратным основанием, сторона которого была равна 1,22 м, и 2,44 м в высоту. Это было необходимо, чтобы определить эффективное сечение (о, сигма, — отсюда и название) графита, приобретенного Силардом. В основании был помещен источник нейтронов, и при помощи пластин индия были произведены измерения.
В июне 1942 года Рузвельт вместе с армией США и Управлением научных исследований и развития начал масштабную работу по созданию атомной бомбы. В августе программу, посвященную урану, назвали Манхэттенским проектом. Работа металлургической лаборатории стала государственным приоритетом, а Ферми получил пост руководителя теоретического отдела проекта.
Между преподаванием и исследовательской работой небольшая разница, если она вообще есть.
Замечание Ферми после цикла лекций, прочитанных в 1942 году
Между 15 сентября и 15 ноября 1942 года Зинн и Андерсон соорудили 16 экспоненциальных реакторов и успешно провели в них измерения. В августе были получены реакторы с коэффициентом размножения, превышающим 1, но контроль реакции еще стоял на повестке дня. В конце ноября казалось, что в реакторе Аргоннской национальной лаборатории все готово для получения самоподдерживающейся цепной реакции.
Однако из-за забастовки сотрудников лаборатории Комптону пришлось принять предложение Ферми и разместить реактор под западным сектором заброшенного стадиона Чикагского университета Stagg Field, на прямоугольном поле для сквоша размерами 9,15 x 18,30 м и немногим больше 8 м в высоту. Зинн и Андерсон уже построили там несколько экспоненциальных реакторов. Ферми смог убедить генерала Лесли Гровса, который должен был контролировать исследования в рамках Манхэттенского проекта (и самого Комптона), в том, что все будет в порядке. Ученый решил придать реактору более округлую форму диаметром 8 м, почти равным высоте поля для сквоша, — это позволяло свести к минимуму потери нейтронов. Он начал работу с деревянным остовом 16 ноября. Андерсон предложил обтянуть сферу оболочкой для аэростатов, а потом откачать из нее воздух и заменить его диоксидом углерода, уменьшив таким образом поглощение нейтронов азотом воздуха. Он сам заказал нужный материал компании Goodyear, которая вначале сочла этот запрос странным и не хотела за него браться, но в конце концов ее убедили деньги и приказ военных властей.
Конструкция состояла из перемежающихся слоев графита с содержанием оксида урана и блоков чистого графита, которым пытались придать близкую к сферической форму. В сборке реактора приняли участие студенты физического факультета Чикагского университета. В графите были проделаны желобки, в которые были вставлены деревянные брусья, покрытые пластинами кадмия. Каждый день в 8 утра Ферми просматривал эти пластины и данные, полученные за предыдущую ночь с помощью счетчика бора-фтора, чтобы проверить интенсивность поглощенных нейтронов. При необходимости пластины заменялись на новые.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.