Успенский пишет о Колмогорове [заметки]

Шрифт
Интервал

[1]

Uspensky V.A. Kolmogorov and Mathematical Logic. The Journal of Symbolic Logic, v. 57, No 2, 385–412, 1992.

[2]

Люстерник Л.А. Ранние годы Московской математической школы. Успехи Математических Наук, т. 22, No. 1, 137–161, 1967.

[3]

Люстерник Л.А. Ранние годы Московской математической школы.  Там же, т. 22, No. 2, 199–239, 1967.

[4]

Люстерник Л.А. Ранние годы Московской математической школы. Там же, т. 22, No. 4, 199–239, 1967.

[5]

Кушнер Б.А. Марков и Бишоп. Вопросы Истории Естествознания и Техники, 1, 70–81, 1992.

[6]

Вейль Г. О философии математики. Сборник работ (пер. с немецкого) ГТТИ, 1934.

[7]

Гейтинг А. Обзор исследований по основаниям математики, М.-Л., ОНТИ, 1936.

[8]

Юшкевич А.П. Встречи с А.Н. Колмогоровым. Препринт. 1990.

[9]

Колмогоров А.Н. О принципе «tertiumnondatur», Математический Сборник, т.32, 646–667, 1924/1925.

[10]

Колмогоров А.Н. Zur Deutung der intuitionistischen Logic. Mathematische Zeitschrift, v. 35, 58–65, 1932.

[11]

А.Г. Драгалин, Б.А. Кушнер. Математический Интуиционизм. Большая Советская Энциклопедия, т.15, 488, 1974.

[12]

Borel E. Lecons sur theorie des fonctions, 3rd ed., Gauthier-Villars, Paris, 1928.

[13]

Dalen D. van, Troelstra A. S. Constructivity in Mathematics. An Introduction. Vol.1–2, North-Holland, Amsterdam-New York-Oxford-Tokyo, 1988.

[14]

Troelstra A.S. On the Early History of Intuitionistic Logic.In P.Petkov, Ed. Mathematical Logic, 3–17, Plenum Press, New York-London, 1990.

[15]

Колмогоров А.Н. Письма к Гейтингу. Успехи Математических Наук, т.43, No.6, 75–77, 1988.

[16]

Kleene S.C. On the interpretation of intuitionistic number theory. Journal of Symbolic Logic, v.10, 109–124, 1945.

[17]

Heijenort J. van.(Ed.) from Frege to Goedel: a source-book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, Massachusetts, 1967.

[18]

Новиков П.С. On the consistency of certain logical calculus. Математический сборник, т. 12 (54), 231–261, 1943.

[19]

Feferman A.B. Politics, Logic, and Love. The Life of Jean van Heijenoort. Jones and Bartlett Publ., Boston-London, 1993.

[20]

Mendelson E. Second Thoughts about Church's Thesis and Mathematical Proofs. The Journal of Philosophy, v.87 No.5, 225–233, 1990.

[21]

Трахтенброт Б.А. Сложность алгоритмов и вычислений. Новосибирск 1967.

[22]

Марков А.А. О нормальных алгорифмах, вычисляющих булевы функции. Доклады АН СССР, т. 157б No. 2, 262–264, 1964.

[23]

Марков А.А. О нормальных алгорифмах, связанных с вычислением булевых функций. Известия АН СССР, сер. мат., т.31, No. 1, 161–208, 1967.

[2]

Первая редакция настоящей работы написана в 1993 г. (прим. 2004 г.).

[3]

В момент написания  статьи я ещё не знал о существовании великолепного тома «Колмогоров в воспоминаниях», редактор-составитель А.Н. Ширяев, Москва, Наука, 1993. В этой книге можно найти и крайне интересные воспоминания В. А. Успенского («Колмогоров, каким я его помню», стр. 280 – 384. Совсем недавно Владимир Андреевич выпустил двухтомник под характерным названием «Труды по Не Математике», ОГИ, М., 2002. (прим. 2004 г.).

[4]

Столетию со дня рождения А.А. Маркова посвящено моё эссе «Учитель», Вестник, Балтимор, №18 (329) – №21, (332), 2003 (прим. 2004 г.).

[5]

В начале 1995 г. я получил из Москвы газету, в которой цитировалась сов. секретная Справка от 20 ноября 1961 г., адресованная ЦК КПСС и подписанная Зав. отделом науки, вузов и школ ЦК КПСС В. Кириллиным и Зам. зав. Отделом науки, школ и культуры ЦК КПСС по РСФСР Ф. Герасиным. Документ излагал  памятные события «дела Лейкина» в партийной интерпретации. Не без изумления обнаружил я и свою фамилию (написанную через «и») в списке зачинщиков: «Вместе с тем Лейкин и поддерживающие его Шапиро, Буевич, Кушнир (! – Б.К.), Томм, Фирсов, Мищенко и Боримечков до собрания провели определённую работу в группах. Ведение собрания оказалось по существу в их руках» («Нас не травили разве что дустом», Куранты, №166 (933), 2 сентября 1994 г.). Собрание, о котором идёт речь, отказалось исключить Лейкина из комсомола (и, тем самым, из Университета). Конечно, было организовано сверху другое собрание, выполнившее волю партии. В то время я и не подозревал о таком высоком внимании. Очевидно, справке не был дан серьёзный ход в партийных инстанциях. Во всяком случае, я не почувствовал заметных последствий при приёме в аспирантуру, а потом на работу (кроме обычных для «лиц еврейской национальности» затруднений) (прим. 2004 г.).

[6]

В футляре от скрипки в зимнее время хранились доказательства Теоремы Ферма. По легендам, не отрицаемым самим их героем, летом Д. плавал на речных пароходах, играл на скрипке для отдыхающей публики, зарабатывая на жизнь и на возможность размышлять над великой загадкой Ферма. По моим наблюдениям производительность труда Д. составляла 1.5-2 доказательства Теоремы Ферма за сезон. В моё время он представлял математической публике доказательства, кажется, под номером 16 (варианты доказательств отмечались добавлением букв, скажем 16 Е). Д. прекрасно знал все ведущие советские Университеты и математические учреждения и всех ведущих математиков. Его отношения с последними были непростыми, с кем-то он, по его утверждению, даже и судился. Легенда утверждала, что вскоре после учреждения фототелеграфа Д. послал в Математический Институт имени Стеклова новогоднюю фототелеграмму. На бланке можно было видеть симпатичную коллекцию ослиных голов, под каждой головой была каллиграфически выписана фамилия очередного знаменитого математика. Впрочем, сам я никогда не видел Д. в агрессивном состоянии, он обычно сидел в углу на скамье, окружённый студентами и рассказывал желающим свою работу. По окончании он просил отзыв вполне умеренного содержания: «Я, такой-то, студент такого-то курса мех-мата, ознакомился с доказательством 16 Е Великой Теремы Ферма, принадлежащим Д.; при поверхностном просмотре явных ошибок не обнаружено».  Трудно сказать верил ли Д. в свои доказательства сам. Однажды он сказал при мне не без гордости: «Это доказательство я показывал Михаилу Михайловичу Постникову; Постников сообщил мне, что мои ошибки становятся всё более и более витиеватыми». Помимо теоремы Ферма, Д. в молодости работал и над perpetuummobile. Здесь он любил рассказывать о доценте, который сначала прогонял его, потом начал называть его идеи гениальными, но в этот момент, когда сотрудничество пошло на лад, доцента забрали в сумасшедший дом. Желающим также позволялось заглянуть в киносценарий «Математический Сталинград», посвящённый участи математиков (названных поимённо), отрицавших идеи Д.

[7]

Интерес Наполеона к математике вообще и к геометрии в частности общеизвестен. Ему даже приписывается изящная теорема о треугольниках (так называемая теорема Наполеона).

[8]

Из ораторов, которых я слышал, пожалуй, только И.Г. Эренбург, В.А. Успенский и Б.В. Гнеденко приближались к П.С.

[9]

Вкусы П.С. Александрова, насколько я могу судить, были несколько консервативны. Некоторые из его учеников утверждали, что для П.С. музыка на Брамсе заканчивалась.

[10]

Я припоминаю одного колоритного студента из отделения механики. Перемежая двойки и тройки, он буквально приполз к своему диплому. Зато его комсомольская энергия била через край. В 80-е годы его можно было видеть на самых высоких постах в Университетской иерархии.

[11]

Один из них, мой однокурсник, талантливый и совершенно беспринципный человек, проделавший головокружительную карьеру, включавшую азартные карточные игры, комсомольскую, партийную работу, работу в администрации Университета и вполне профессиональную математическую работу. Другой был видным специалистом в теории чисел.

[12]

А.В. Кузнецов родился 28 октября 1926 года и умер 24 июля 1984 года.

[13]

С.А. Яновская (1896 - 1966), выдаюшийся специалист в математической логике и философии математики. Один из организаторов кафедры математической логики в Московском Университете. О её роли в предвоенной математической жизни интересно вспоминает Люстерник [3]. В мои студенческие и особенно аспирантские годы Софья Александровна уже страдала тяжёлой болезнью. Тем не менее, она продолжала читать свой традиционный курс математической логики и соруководить научно-исследовательским семинаром кафедры. С.А. до самого конца сохраняла острый интерес ко всему новому в математике. В один из весенних дней 1966 года я провожал её домой. Прощаясь, она сказала, что эта весна для неё последняя, что она уже не слышит запахов этой весны... 25 октября того же года её не стало. (См. также мои воспоминания Boris A. Kushner, Sof'ja Aleksandrovna Janovskaja: a few reminiscences, Modern Logic, vol.6, no.1, 67–72, January 1996. Русский перевод публиковался в журналах Вопросы естествознания и техники, т.4, стр. 119–123, Москва, 1996 (под названием «Несколько воспоминаний о Софье Александровне Яновской») и Вестник  №14 (273), Baltimore, July 3, 44-46, 2001 (под названием «Мои воспоминания о Софье Александровне Яновской»)  – прим. 2004 г.).

[14]

Как хорошо известно, принцип исключённого третьего не несёт ответственности за парадоксы теории множеств.

[15]

Замечательный математик, Альберт Григорьевич Драгалин (10 апреля 1941 г. – 18 декабря 1998г.) один из самых ярких участников школы А.А. Маркова. Его безвременная смерть была большим пострясением для всех нас. Воспоминания о Драгалине выдающегося голландского математика A. Troelstra можно найти на http://staff.science.uva.nl/~anne/dragalin.html, некролог: S. Artemov, B. Kushner, G. Mints, E. Nogina, and A. Troelstra, In Memoriam: Albert G. Dragalin, The Bulletin of Symbolic Logic, vol 5, No.3, 389-391,1999 (прим. 2004 г.).

[16]

Соответственно я цитирую В.И. Ленина по памяти. Такое «цитирование» представляется в данном контексте вполне органичным.

[17]

Великому математику двадцатого века Давиду Гильберту принадлжежит высказывание в известном смысле противоположное ленинскому. Про одного из своих учеников Гильберт заметил, что тот стал поэтом, поскольку для математики у него не хватало фантазии (прим. 2004 г.).

[18]

В связи с подобными проблемами часто приходится слышать о языковом барьере. Боюсь, однако, что дело обстоит сложнее. Во-первых, скажем, Колмогорову не легче читать по-английски, чем любому его англоязычному коллеге по-русски. Во-вторых, статья 32-го года написана по-немецки, а статья 25-го года уже довольно давно (1967 г.) опубликована в английском переводе профессором Хейенортом [17]. В третьих, трудно не вспомнить об аналогичной судьбе выдаюшейся работы П.С. Новикова [18], опубликованной в 1943 году по-английски. И это не помогло - работа эта по сей день остаётся практически неизвестной за пределами (бывшего) Советского Союза. Не мне, однако, искать разгадку описанного феномена.

В связи с публикацией английского перевода статьи 25-го года приведём короткое, но выразительное письмо Колмогорова (копия приводимого письма получена, благодаря любезности Профессора И. Анелиса, из Jean van Heijenoort papers, 1946-1983, Archives of  American Mathematics, University Archives, University of Texas at Austin).

Москва В 234                     Professor John van Heijenoort

Университет                      100 Washington Square

Зона Л. кв. 10                   New York 3 N.Y. USA

А.Н.Колмогоров

Глубокоуважаемый Коллега!

Моя работа, опубликованная в 1925 году, может рассматриваться как общее достояние специалистов по математической логике, и я ничего не имею против ее перевода. Рассчитываю, впрочем, на Вашу любезность в смысле присылки мне экземпляра подготовляемой Вами книги по её выходе в свет.

                 С искренним уважением

12 ноября 1963                         Ваш А. Колмогоров

О невероятной жизни самого ван Хейенорта можно прочесть в яркой книге Аниты Феферман [19].

[19]

Связь этих двух теорий особенно ясно ощущается в иерархиях множеств в теории рекурсивных функций (иерархия Клини-Мостовского и т.д.).

[20]

Запомнился доклад Н.А. Шанина о кванторах предельной осуществимости. Доклады Николая Александровича всегда являлись событиями. Они покоряли как значительностью расматриваемых проблем, так и темпераментом и человеческим обаянием докладчика, его бескомпромиссным "правдоискательством" в математике. Я, как правило, не разделял философских установок Н.А. и часто вступал с ним в дискуссии, порой довольно горячие. Не отставали от меня и некоторые другие участники наших семинаров. Должен заметить, что Н.А. явно любил эти баталии, в тех редких случаях, когда всё сходило тихо, он выглядел заметно разочарованным. Упомянутый доклад вызывал у меня особый интерес, поскольку я интересовался системами вычислимых действительных чисел, основанными как раз на такого рода квантификациях. Эти мои интересы неоднократно и нелицеприятно осуждались Н.А. Соответственно я предвкушал своего рода возмездие. Дискуссии, однако, не получилось. Колмогоров, сидевший в первом ряду, выглядел настолько нездоровым, что ни о чём другом и думать было нельзя. Николай Александрович быстро прочёл свой доклад, его печаль и тревога были очевидны. И всё же Колмогоров нашёл силы приподняться и поблагодарить Н.А. в конце семинара. Думаю, что это был последний раз, когда я слышал Колмогорова.

[21]

Одни из первых результатов в оценка сложности алгоритмических вычислений были получены ещё в 50-х годах учеником А.А. Маркова Г.С. Цейтиным. Великолепное введение в указанную проблематику можно найти в книге Б.А. Трахтенброта [21].

[22]

Помню, как жаловался мне А.Г. Драгалин: «Понимаешь, попросил я Лёню сделать доклад о теории информации на моём семинаре. А он мало того, что порядочно опоздал, да и ещё и начал так: «Рассмотрим какой-нибудь бессмысленный набор слов, скажем, «Слава КПСС!»» Припоминаю и следующий комический эпизод на одном из наших семинаров. Обсуждался вопрос о количестве информации, содержащейся в одном конструктивном объекте о другом конструктивном объекте. Левин стоял у доски, а Марков задавал ему хитрый вопрос: «Ну какая информация содержится в телефонной книге об Евгении Онегине?» - «Телефон Евгения Онегина» подсказал с  места кто-то.


Еще от автора Борис Абрамович Кушнер
Учитель

Воспоминания посвящены выдающемуся математику Маркову Андрею Андреевичу младшему (1903, Санкт-Петербург — 11 октября 1979, Москва).Мы, ученики Андрея Андреевича, просто обязаны написать о нём, о нашем времени. Пока помним, сколько помним. Пока живём. В меру своих сил я пробую сделать это. Эти строки посвящаются памяти моего Учителя и памяти трёх его учеников и последователей, дорогих друзей и коллег, безвременно ушедших из жизни. Вот их имена: Сергей Юрьевич Маслов (10 июня 1939 г. — 29 июля 1982 г.), Освальд Демут (Oswald Demuth) (9 декабря 1936 г.


Рекомендуем почитать
Ковчег Беклемишева. Из личной судебной практики

Книга Владимира Арсентьева «Ковчег Беклемишева» — это автобиографическое описание следственной и судейской деятельности автора. Страшные смерти, жуткие портреты психопатов, их преступления. Тяжёлый быт и суровая природа… Автор — почётный судья — говорит о праве человека быть не средством, а целью существования и деятельности государства, в котором идеалы свободы, равенства и справедливости составляют высшие принципы осуществления уголовного правосудия и обеспечивают спокойствие правового состояния гражданского общества.


Пугачев

Емельян Пугачев заставил говорить о себе не только всю Россию, но и Европу и даже Северную Америку. Одни называли его самозванцем, авантюристом, иностранным шпионом, душегубом и развратником, другие считали народным заступником и правдоискателем, признавали законным «амператором» Петром Федоровичем. Каким образом простой донской казак смог создать многотысячную армию, противостоявшую регулярным царским войскам и бравшую укрепленные города? Была ли возможна победа пугачевцев? Как они предполагали обустроить Россию? Какая судьба в этом случае ждала Екатерину II? Откуда на теле предводителя бунтовщиков появились загадочные «царские знаки»? Кандидат исторических наук Евгений Трефилов отвечает на эти вопросы, часто устами самих героев книги, на основе документов реконструируя речи одного из самых выдающихся бунтарей в отечественной истории, его соратников и врагов.


Небо вокруг меня

Автор книги Герой Советского Союза, заслуженный мастер спорта СССР Евгений Николаевич Андреев рассказывает о рабочих буднях испытателей парашютов. Вместе с автором читатель «совершит» немало разнообразных прыжков с парашютом, не раз окажется в сложных ситуациях.


На пути к звездам

Из этой книги вы узнаете о главных событиях из жизни К. Э. Циолковского, о его юности и начале научной работы, о его преподавании в школе.


Вацлав Гавел. Жизнь в истории

Со времен Макиавелли образ политика в сознании общества ассоциируется с лицемерием, жестокостью и беспринципностью в борьбе за власть и ее сохранение. Пример Вацлава Гавела доказывает, что авторитетным политиком способен быть человек иного типа – интеллектуал, проповедующий нравственное сопротивление злу и «жизнь в правде». Писатель и драматург, Гавел стал лидером бескровной революции, последним президентом Чехословакии и первым независимой Чехии. Следуя формуле своего героя «Нет жизни вне истории и истории вне жизни», Иван Беляев написал биографию Гавела, каждое событие в жизни которого вплетено в культурный и политический контекст всего XX столетия.


Счастливая ты, Таня!

Автору этих воспоминаний пришлось многое пережить — ее отца, заместителя наркома пищевой промышленности, расстреляли в 1938-м, мать сослали, братья погибли на фронте… В 1978 году она встретилась с писателем Анатолием Рыбаковым. В книге рассказывается о том, как они вместе работали над его романами, как в течение 21 года издательства не решались опубликовать его «Детей Арбата», как приняли потом эту книгу во всем мире.