Учитель [заметки]
1
Ведь и сама десятичная система счисления условна. Видимо, дело в том, что Б-г наградил нас десятью пальцами (интересный вопрос, — почему именно десятью). Будь мы роботами, видимо, считали бы на один-два, а родись осьминогами, наверное, считали бы в восьмеричной системе.
2
Как я сам и писал недавно «А век, в котором жизнь прожил / Теперь зовётся прошлым» (Вестник, № 16(300), 24 июня 2002 г., стр. 52).
3
Воспоминания о Драгалине выдающегося голландского математика A.Troelstra можно найти на http://staff.science.uva.nl/~anne/dragalin.html, некролог S.Artemov, B.Kushner, G.Mints, E.Nogina and A.Troelstra, In Memoriam: Albert G. Dragalin, The Bulletin of Symbolic Logic, vol 5, No.3, 389–391,1999. Воспоминания ленинградских коллег Маслова можно найти на сайте http://www.mathsoc.spb.ru/pers/maslov/. Там же есть координаты опубликованных некрологов. Мне не удалось локализовать некролог Демута. Его памяти я посвятил большую статью и доклад конференции в Брно: B.A.Kushner, Kurt Gödel and the constructive Mathematics of A.A.Markov, Gödel ‘96, Logical Foundations of Mathematics, Computer Science and Physics — Kurt Gödel‘s Legacy, Brno, Czech Republic, August 1996, Proceedings, Lecture Notes in Logic, 6, Petr Hajek, Ed., 51–63,1996, Springer, Germany.
4
Достаточно напомнить ожесточённую дискуссию конца 17-го века по поводу «изобретения» дифференциального и интегрального исчислений. Я имею ввиду приоритетный спор между двумя великими учёными — Ньютоном и Лейбницем. (См., например, David M. Burton, The History of Mathematics, An Introduction, Second Edition, Wm.C.Brown Publ., 1991, стр. 366 и далее).
5
Действительное число называется иррациональным, если оно не представимо, как отношение двух целых чисел. В нашем примере речь идёт об иррациональности квадратного корня из двух, первом и самом знаменитом примере этого рода. Иррациональное число записывается бесконечной (непременно бесконечной!) и не периодической десятичной дробью.
6
Впрочем, сама наша способность оперировать с абстрактными понятиями, в частности, с теми же положительными целыми числами, удивительна. Можно говорить о шести яблоках, шести стульях, шести улыбках. Можно заметить что-то общее во всех этих группах объектов, возможность расположить объекты из разных групп парами. Следующий шаг, формирование идеи числа «шесть», сущности освобождённой от любой конкретной ситуации, представляет собою подвиг абстракции, к сожалению, мало кем замечаемый.
7
Учебники геометрии Киселёва, памятные нескольким поколениям читателей, в сущности, представляют собою переработки Евклида.
8
Разряды привлекали и привлекают внимание, как профессиональных математиков, так и любителей. Мы отсылаем читателей к настоящей поэме о «пи» и рыцарях этого числа, изящно изданной книге David Blatner, The Joy of, Walker Publishing Co., New York, 1977, paperback 1999. Вдоль всей книги, по нижнему полю страниц проходит вереница едва различимых цифр: миллион (!) знаков загадочной константы.
9
«Здесь мудрость. Кто имеет ум, тот сочти число зверя, ибо это число человеческое: число его шестьсот шестьдесят шесть» (Откровение Святого Иоанна Богослова (Апокалипсис), 13:18).
10
Ср. Burton, цит. соч. стр. 454 и далее.
11
Вариант «алгоритм» этого термина гораздо более распространён в литературе. А.А. предпочитал здесь несколько старомодное «ф». На мой взгляд «алгорифм» действительно звучит куда интереснее, чем «алгоритм»
12
А.А. Марков, Н.М. Нагорный, Теория алгорифмов, Наука, Москва, 1984, Второе издание, Фазис, Москва 1996. А.А. Марков, Избранные труды, том 1, Математика, Механика, Физика, Издательство МЦНМО, Москва 2002.
13
С.Я Гродзенский, Андрей Андреевич Марков. М., Наука, 1987. Сергей Яковлевич, известный шахматист, также составил и отредактировал в сотрудничестве с А.А. Марковым, Мл. замечательную книгу Шахматы в жизни ученых, М., Наука 1983 г.
14
Одна из основных теорем теории вероятностей.
15
Цит. соч., 1987, стр.136.
16
Мне помнится, что в этой легенде имелся в виду выдающийся учёный, профессор, начальник кафедры баллистики Военно-воздушной академии им. Жуковского, генерал-майор авиации Дмитрий Александрович Вентцель.
17
Гродзенский, цит. соч. 1987, стр. 104.
18
Там же, стр. 105.
19
Там же, стр.102–104.
20
Много лет назад мне довелось читать в Самиздате заявление Сахарова на этот счёт. Не доверяя памяти, я обратился с запросом к Сахаровскому центру при Университете Брандайса (The Andrei Sakharov Archives and Human Rights Center at Brandeis University, см. http://www.brandeis.edu/departments/sakharov/). Архивист Центра доктор Александр Грибанов любезно ответил на мой запрос, сообщив, что Заявление Сахарова от 12 июня 1979 г. имеется в архиве (единица хранения S.II.2.1.27). Моя глубокая благодарность доктору Грибанову и его коллегам по Сахаровскому Центру за их благородную деятельность по сохранению и поддержанию наследия великого учёного-гуманиста.
21
Там же, стр. 137.
22
Там же, стр. 93.
23
Там же стр. 39.
24
Там же, стр. 131.
25
С.И.Адян, известный математик.
26
Ещё одна апокрифическая история. Андрей Андреевич принимает экзамен у Владимира Андреевича, даёт ему задачу, которую экзаменуемый почти мгновенно решает.
— Молодец, я бы так быстро это не сделал, — говорит А.А.
— Ну, ты у нас известный дурак в семье, — отвечает В.А.
Здесь, как и положено по законам мифологии, анекдот обрывался, не сообщая, как ответил брату Марков, Ст. Случись это наяву, думаю, Андрей Андреевич рассмеялся бы. На более серьёзной ноте коллега Маркова В.А. Стеклов писал о нём: «В спорах он мог стерпеть какие угодно резкие выражения по своему адресу, лишь бы они строго относились к существу дела и не отклоняли его в сторону, не отвлекали от главной темы в сторону личных чувств или компромиссного, обыкновенно никого не удовлетворяющего решения». (Гродзенский, цит. соч. 1987, стр. 72).
27
Франц Ксавер (позднее Вольфганг Амадей) Моцарт (1791–1844), младший сын Моцарта, стал пианистом и композитором. Карьера его была неудачной, а жизнь печальной (см., H. Gдrtner, Constanze Mozart. After the Requiem, Amadeus Press, Portland Oregon, 1991, пер. с нем.). Впрочем, известны и примеры противоположного свойства. Например, династия Бахов, сыновья Иоганна Себастьяна, великолепные композиторы, чувствовали себя прекрасно на своём поприще, а славой при жизни, пожалуй, превосходили отца. Можно также вспомнить и математическую династию Бернулли. Но имеется и множество примеров феномена «сына Моцарта».
28
Марков, цит. соч. 2002, стр. XII. Воспоминания А.А., написанные им в поздние годы, не окончены и были мне недоступны при написании настоящего очерка. «Воспоминания» упоминаются и цитируются в статье Н.М. Нагорного «От составителя» в упомянутом выше томе трудов Маркова, и в книге Гродзенского, 1987. Не знаю, имеется ли в виду одна и та же рукопись.
29
Там же, стр. XIII.
30
Там же, стр. XIII.
31
Guiseppe Peano (1858–1932), выдающийся итальянский математик. Среди его основных достижений — разработка аксиоматики арифметики.
32
Я где-то читал похожее высказывание Пабло Сарасате. Получив партитуру скрипичного Концерта Брамса (а концерт, как и Бетховенский, начинается развёрнутым оркестровым вступлением), испанский виртуоз сказал, что музыка-то хорошая, но «неужели этот человек воображает, что я буду стоять десять минут на эстраде и ничего не делать?»
33
В первом томе двухтомника Маркова (цит. выше) имеется наиболее полный на сегодняшний день список его трудов (120 названий). Нельзя снова не отметить выдающуюся роль составителя двухтомника Н.М. Нагорного в сохранении, описании и осмыслении марковского научного наследия.
34
Здесь, например, можно упомянуть недавно обнаруженное авторское свидетельство 1941 г. «О движении авиаторпеды по почти вертикальной части траектории». Работа, результаты которой были переданы Главному Артиллерийскому Управлению, была выполнена совместно с погибшим позже на войне М.Я. Перельманом, сыном знаменитого автора популярных книг по различным наукам.
35
Марков 2002, стр. VI.
36
Georg Cantor (1845–1918). Вслед за Кантором следует упомянуть другого великого немецкого математика Рихарда Дедекинда (Richard Dedekind (1831–1916)).
37
Георг Кантор, "Труды по теории множеств", под ред. А.Н. Колмогорова и А.П. Юшкевича, «Наука», Москва 1985. Замечательный очерк Теории Множеств, включающий философские и исторические вопросы, можно найти в монографии Френкеля и Бар-Хиллела «Основания Теории Множеств», Мир, Москва 1966, пер. с англ. Англ. оригинал: Foundations of Set Theory, North-Holland Publ. Co, Amsterdam, 1958.
38
Огромный интерес представляет переписка Кантора с Дедекиндом.
39
Самая первая фраза, открывающая Библию, «В начале сотворил Б-г небо и землю», прочитанная в оригинале, содержит загадку, переводом не переданную (невероятно трудно переводить Танах!) Стоящее в оригинале слово «Элохим», переведённое, как Б-г, грамматически является множественным числом от «Эл» («бог», скорее в языческом смысле слова), однако, управляет глаголами в единственном числе. И эта грамматическая странность настойчиво проводится в Танахе. Одно из объяснений состоит в том, что здесь необычная грамматика выражает идею постижения нашим Духом Единого Б-га, вобравшего в себя и преодолевшего все прежние языческие божества. Основная интеллектуальная операция теории множеств, при которой из предстоящих нашему воображению или взгляду объектов создаётся новая сущность, новый объект — множество данных предметов, сродни этой фундаментальной теологической конструкции.
40
Случилось так, что буквально в те же дни меня попросили сделать доклад на ту же тему для аспирантов-математиков мех-мата МГУ. Переключаться с одной аудитории на совершенно другую было тоже крайне интересно.
41
Многие источники относят это фундаментальное открытие (первый пример бесконечности, «большей», чем бесконечность ряда положительных целых чисел) к более поздней дате, но оно обсуждается и формулируется уже в письмах Кантора Дедекинду декабря 1873 г. (См., Кантор, цит. соч. стр. 329–330).
42
«Я это вижу, но я в это не верю» — писал Кантор Дедекинду (письмо от 29 июня 1877 г., Кантор цит. соч. стр. 344; интересно, что цитированные слова написаны Кантором по-французски, чем, вероятно, подчёркивается его эмоциональное состояние). Позже Брауэр (об этом выдающемся математике мы ещё поговорим ниже) показал, что наша интуиция восстанавливается, если рассматривать непрерывные (топологические) соответствия между прямой и пространством…
43
Кантор, цит. соч., стр. 173.
44
Кстати, в теории множеств вводится понятие так называемого пустого множества, в котором вообще нет элементов. Что-то вроде числа ноль в арифметике. В этих терминах можно сказать, что никто не знает сегодня, пусто или нет множество всех нечётных совершенных чисел.
45
По имени античного философа Платона (428 или 427–348 или 347 до н. э.), с идеями которого действительно перекликается мировоззрение Кантора.
46
Если не ошибаюсь, эту мысль высказывал выдающийся немецкий логик, математик и философ Фреге (Gottlog Frege (1848–1925)).
47
Этим свойством обладает множество всех подмножеств любого множества.
48
Речь идёт о парадоксах, связанных с автореферентностью, когда некоторое понятие определяется в терминах, включающих его самого, или когда некоторое понятие применяется к самому себе. Здесь можно упомянуть парадоксы «лжеца», известные с глубокой древности. Допустим, я произношу фразу: «То, что я сейчас сказал — ложь». Невозможно оценить это высказывание, ни как истинное, ни как ложное. К этому же типу относится известный в античности парадокс «все критяне лжецы» (представим себе, что это говорит критянин). Построение Рассела близко к известному парадоксу брадобрея: «В Севилье живёт цирюльник, который бреет всех тех севильцев, кто сам себя не бреет (и только их); как быть, если ему надо побриться?». Очевидно, такого рода цирюльник не может жить в Севилье, и эта идея лежит в основе так называемого диагонального метода Кантора и многих конструкций в теории алгорифмов. Однако, в случае теории множеств «Севильей» оказывается вся математическая Вселенная, и мы оказываемся перед лицом драматического противоречия. Ср., например, Френкель, Бар-Хиллел, цит. соч., Стефен К. Клини, Введение в метаматематику, иностранная литература, Москва 1957, пер. с англ., стр. 39–42.
49
«Никто не сможет изгнать нас из математического рая, созданного для нас Кантором!» — писал Гильберт (статья «О бесконечном», в книге Д. Гильберт, Основания Геометрии, ОГИЗ, Государственное Издательство Технико-Теоретической Литературы, Москва-Ленинград, 1948, стр. 350, пер. с нем).
50
В.А. Успенский, Семь размышлений на темы философии математики, Закономерности развития современной математики, Наука, М., 106–155, 1987.
Владимир Андреевич был, в частности, одним из основателей Отделения Структурной и Прикладной Лингвистики (знаменитый ОСИПЛ) на филологическом факультете МГУ. В.А. Успенский также оригинальный философ и вообще широко одарённый человек. Совсем недавно Владимир Андреевич выпустил двухтомник под характерным названием «Труды по Не Математике», ОГИ, М., 2002. Мои воспоминания об Успенском (и о мех-мате МГУ) можно найти в статье «Успенский пишет о Колмогорове», Историко-математические исследования, Вторая Серия, вып. 1(36), № 2, 165–191, Янус, М. 1996. (Английская версия: B.A. Kushner, Memories of Mech-Math in the Sixties, Modern Logic Vol. 4, № 2, 165–195, 1994).
51
Заинтересованный читатель может подробнее прочесть обо всём этом во введении к моей книге «Лекции по конструктивному математическому анализу», Наука, М., 1973 (существует английский перевод: B.A. Kushner, Lectures on Constructive Mathematical Analysis, AMS, Providence, Rhode Island, 1984). Не предполагает особой подготовки и моё эссе «Марков и Бишоп», Вопросы Истории Естествознания и Техники, № 1, 70–81, 1992 (опубликована также английская версия этой работы B.A.Kushner, Markov and Bishop, Golden Years of Moscow Mathematics, S. Zdravkovska, P. Duren, AMS-LMS, Providence, Rhode Island, 179–197, 1993). Более специальный характер носят мои статьи «Принцип бар-индукции и теория континуума у Брауэра», Закономерности развития современной математики, Наука, М., 230–250, 1987, «Арендт Гейтинг: Краткий очерк жизни и творчества», Методологический анализ оснований математики, Наука, М., 121–135, 1988, B.A. Kushner, Markov’s Constructive Analysis: a participant’s view, Theoretical Computer Science, vol. 219, 267–285, 1999.
52
А.А. Марков, Теория алгорифмов, Труды Матем. ин-та АН СССР им. В.А. Стеклова, т. 42, 1954. См., также цитированные выше два издания одноименной монографии Маркова и Нагорного.
53
Наши рассуждения показывают неприемлемость в конструктивной логике закона снятия двойного отрицания (если неверно, что неверно А, тоА). Закон этот, часто рассматриваемый в логике отдельно, немедленно следует из более общего закона исключённого третьего. В самом деле, поскольку имеет место одно из двух А или не А, причём не А исключено, то остаётся А.
54
См., например, Е. Пастернак, Борис Пастернак, Биография, Из-во Цитадель, Москва, 1997.
55
Ситуация с Иудой Искариотом вовсе не так проста, как многим кажется. Здесь можно рекомендовать замечательную, хотя и не бесспорную (бывают ли бесспорные работы на подобные темы вообще?) книгу известного исследователя Маккоби: Hyam Maccoby, Judas Iscariot and the Myth of Jewish Evil, The Free Press, New York, 1992.
56
Эта печальная, увы, вечная и вызывающая противоречивые эмоции тема заслуживает отдельного исследования. Ограничусь здесь замечанием из моей статьи «Памяти Друзей» («Вестник», № 21 (202), 1998): «Совсем недавно я столкнулся с ярким образчиком подобного умонастроения в интервью, которое дал Е.Б. Пастернак балтиморскому журналу «Вестник» (No.13(194), июнь 1998 г.). Отвечая на довольно неудобный вопрос об отношении своего отца к еврейскому народу, Е.Б. Пастернак сказал: «Мой отец, никогда не отрекавшийся от народа, к которому принадлежал, всю жизнь преодолевал племенную узость. Преодолевал настолько, что с полным правом считал себя русским писателем». Само собой разумелось, что уж русский-то писатель, в отличие от какого-то там еврейского, никак не может страдать пороком «племенной узости»…»
57
Стихотворение без названия из книги «Когда разгуляется», 1956, «Волны», из книги «Второе Рождение», 1931. Не привожу конкретных ссылок, поскольку сегодня стихи Пастернака доступны во множестве изданий.
58
П.С. Александров, 1896–1982, крупнейший математик, один из творцов современной топологии. Я немного рассказал о нём в цитированных выше воспоминаниях о мех-мате («Успенский пишет о Коломогорове»).
59
Если мне не изменяет память, им тогда был замечательный геометр Николай Владимирович Ефимов (1910–1982). Я слушал у Николая Владимировича курс математического анализа. Это было незабываемо.
60
На интернете http://magazines.russ.ru/zvezda/2001/12/markov.html. Самую полную подборку стихов Маркова можно найти на сайте «Поэзия Московского Университета» http://poesis.ru/, который создан и поддерживается Галиной Воропаевой (она замечательный поэт сама).
61
На старой территории Новодевичьего кладбища в Москве, сразу у входа, направо.
62
Есть стихотворение о клопе и у Гейне (см., например, Генрих Гейне, Стихотворения и поэмы, Москва, Из-во «Правда», 1984, стр. 262). Это стихотворение представляется мне неудачным, а содержащиеся в нём грубые нападки на Мейербера (разнообразно и щедро помогавшего Гейне в течение многих лет) не делают чести поэту.
63
Иоганн Вольфганг Гёте, Фауст, пер. с немецкого Б. Пастернака, Библиотека всемирной литературы, Из-во «Художественная литература», Москва, 1969, стр. 107.
64
Монада — излюбленное понятие философов с античных времён.
65
Принятое в среде математиков выражение, когда кто-то доказал теорему, более сильную, чем предыдущая.
66
Если мне не изменяет память, в последний год жизни А.А. подарил эту работу одной из сотрудниц Вычислительного центра АН СССР.
67
Бонифатий Михайлович Кедров (1903–1985), философ, академик. Одно время обсуждался задуманный им проект перехода Маркова со всей его лабораторией Вычислительного центра на работу в «Жёлтый дом» на Волхонке, Институт философии АН СССР. К счастью, ничего из этого не вышло.
68
Так и вспоминается это «Вертинское»: «Мадам, уже падают листья»…
69
Андрей Андреевич Марков, мл. похоронен на Новокунцевском Кладбище в Москве.
В первой части книги «Дедюхино» рассказывается о жителях Никольщины, одного из районов исчезнувшего в середине XX века рабочего поселка. Адресована широкому кругу читателей.
В последние годы почти все публикации, посвященные Максиму Горькому, касаются политических аспектов его биографии. Некоторые решения, принятые писателем в последние годы его жизни: поддержка сталинской культурной политики или оправдание лагерей, которые он считал местом исправления для преступников, – радикальным образом повлияли на оценку его творчества. Для того чтобы понять причины неоднозначных решений, принятых писателем в конце жизни, необходимо еще раз рассмотреть его политическую биографию – от первых революционных кружков и участия в революции 1905 года до создания Каприйской школы.
Книга «Школа штурмующих небо» — это документальный очерк о пятидесятилетнем пути Ейского военного училища. Ее страницы прежде всего посвящены младшему поколению воинов-авиаторов и всем тем, кто любит небо. В ней рассказывается о том, как военные летные кадры совершенствуют свое мастерство, готовятся с достоинством и честью защищать любимую Родину, завоевания Великого Октября.
Автор книги Герой Советского Союза, заслуженный мастер спорта СССР Евгений Николаевич Андреев рассказывает о рабочих буднях испытателей парашютов. Вместе с автором читатель «совершит» немало разнообразных прыжков с парашютом, не раз окажется в сложных ситуациях.
Из этой книги вы узнаете о главных событиях из жизни К. Э. Циолковского, о его юности и начале научной работы, о его преподавании в школе.
Со времен Макиавелли образ политика в сознании общества ассоциируется с лицемерием, жестокостью и беспринципностью в борьбе за власть и ее сохранение. Пример Вацлава Гавела доказывает, что авторитетным политиком способен быть человек иного типа – интеллектуал, проповедующий нравственное сопротивление злу и «жизнь в правде». Писатель и драматург, Гавел стал лидером бескровной революции, последним президентом Чехословакии и первым независимой Чехии. Следуя формуле своего героя «Нет жизни вне истории и истории вне жизни», Иван Беляев написал биографию Гавела, каждое событие в жизни которого вплетено в культурный и политический контекст всего XX столетия.