Учение о бытии - [131]

Шрифт
Интервал

и т. д. в самые предметы, им указываются прямо те части, коим в них самих свойственна определенность производных функций (функций развития), и тем самым оказывается, что форма ряда не есть здесь то, о чем идет дело[28].

Примечание 3-е

Еще другие формы, связанные с качественною определенностью величины

Бесконечно малое дифференциального исчисления есть в своем утвердительном смысле качественная определенность величины, о которой будет далее сказано, что она в этом исчислении рассматривается не только вообще, но на особенном отношении степенной функции к функции ее развития. Но эта качественная определенность является еще в дальнейшей, так сказ., слабейшей форме, и последняя, равно как связанное с нею употребление бесконечно малых и их смысл при таком употреблении, должны быть рассмотрены в настоящем примечании.

Исходя из вышеизложенного, мы должны в этом отношении припомнить, что различаемые степенные определения с аналитической стороны проявляются прежде всего, как формальные и совершенно однородные, что они означают числовые величины, не имеющие, как таковые, качественного различия одна от другой. Но в приложении к пространственным предметам аналитическое отношение обнаруживается вполне в своей качественной определенности, как переход от линейных к плоскостным >{207}определениям, от прямолинейных к криволинейным и т. д. Далее это приложение приводит к тому, что пространственные предметы, данные по их природе в форме непрерывных величин, понимаются дискретно, — плоскость, как множество линий, линия, как множество точек и т. д. Единственный интерес такого разложения состоит в определении самых точек, на которые разлагается линия, линий, на которые разлагается плоскость и т. д., дабы от такого определения подвигаться далее аналитически, т. е. собственно арифметически; эти исходные пункты суть элементы искомых определений величины, из которых (элементов) должны быть выведены функция и уравнение для конкретного, для непрерывной величины. Для решения задач, в коих по преимуществу обнаруживается интерес к употреблению этого приема, требуется в качестве исходного элемента нечто определенное для себя самого в противоположность непрямому ходу решения, поскольку последний может начинать лишь с пределов, между которыми лежит то определенное для себя, которое служит ему целью. Результаты обоих методов совпадают, если только может быть найден закон дальнейшего процесса определения при отсутствии возможности достигнуть полного, т. е. т. наз. конечного определения. Кеплеру приписывается честь впервые придти к мысли такого обратного приема и принятие дискретного за исходный пункт. Объяснение того, как он понимает первое предложение архимедова измерения круга, выражает это очень просто. Первое предложение Архимеда состоит, как известно, в том, что круг равен прямоугольному треугольнику, один катет которого есть радиус, а другой равен длине окружности. Находя смысл этого предложения в том, что окружность круга содержит столько же частей, как точек, т. е. бесконечно много, из коих каждая может считаться основанием равнобедренного треугольника и т. д., Кеплер выражает тем самым разложение непрерывного в форму дискретного. Встречающееся здесь выражение бесконечное еще очень далеко от того определения, какое дается ему в дифференциальном исчислении. Если для таких дискретных частей найдена определенность, функция, то они должны быть далее соединены, служить элементами непрерывного. Но так как никакая сумма точек не образует линию, никакая сумма линий не образует плоскости, то точки уже изначала принимаются за линейные, а линии — за плоскостные. Умножение линий на линии представляется сначала чем-то бессмысленным, т. к. умножение вообще производится над числами, т. е. есть такое их изменение, при котором то, во что они переходят, совершенно однородно с произведением, есть изменение только величины. Напротив, то, что называется умножением линии, как таковой, на линию — т. е. ductus liniae in liniam или plani in planum, которое есть также ductus puncti in lineam — есть изменение не только величины, но последней, как качественного определения пространства, как измерения; переход линии в плоскость должен быть понимаем, как выход из себя, поскольку выход из себя точки есть линия, плоскости — полное пространство. То же самое получается, когда пред>{208}ставляют себе, что движение точки образует линию и т. д.; но движение подразумевает определение времени и потому является в этом представлении лишь более случайным, внешним изменением состояния; между тем под выходом из себя должно понимать определенность понятия, качественное изменение — выражаясь арифметически, умножение — единицы (как точки и т. п.) в определенное число (линию и т. п.). При этом следует еще заметить, что при выходе из себя площади, который является как бы умножением площади на площадь, оказывается, по-видимому, различие между арифметическим и геометрическим произведением, так как выход из себя площади, как ductus plani in planum, арифметически дает умножение второго измерения на второе, т. е. произведение четырех измерений, геометрически понижаемое, однако, до трех. Насколько число с одной стороны, так как оно имеет своим принципом единицу, дает прочное определение внешнему количественному, настолько же произведение его формально; как числовое определение, 3*3, умноженное само на себя, есть 3*3*3*3; но та же величина, умноженная на себя, как определение площади, удерживается на 3*3*3, так как пространство, представляемое, как выход за себя точки, отвлеченного предела, имеет свой истинный предел, как


Еще от автора Георг Вильгельм Фридрих Гегель

Категорический императив и всеобщая мировая ирония

Иммануил Кант (1724–1804) оказал огромное влияние на развитие классической философии. В своих трудах он затронул самые важные вопросы мироздания и человеческого общества, ввел многие основополагающие понятия, в том числе «категорический императив». По мнению Канта, категорический императив – это главные правила, которыми должны руководствоваться как отдельные личности, так и общество в целом, и никакие внешние воздействия, так называемые «объективные причины» не должны мешать выполнению этих правил. Георг Гегель (1770–1831) один из создателей немецкой классической философии.


Феноменология духа

Имя Георга Вильгельма Фридриха Гегеля для многих наших современников стало синонимом слова «философ». Ни один из его предшественников не поднимал дисциплину, веками считавшуюся «служанкой богословия», на столь высокий пьедестал. «Гегель — это вкус», — утверждал Фридрих Ницше, а русский мыслитель Владимир Соловьев, говоря о Гегеле, замечал: «Изо всех философов только для него одного философия была все». Парадоксально, но вот уже двести лет стройный монолит гегелевской философии — предмет борьбы самых разнообразных противоборствующих сторон за право присвоить ее, сделав на сей раз «служанкой идеологии» или антропологии.


Философия истории

«Философия истории» Гегеля представляет собой курс лекций. В чрезвычайно яркой форме выражено здесь отмеченное Марксом и Энгельсом у Гегеля противоречие между диалектическим методом и его реакционной идеалистической системой. «Важнее всего введение, где много прекрасного в постановке вопроса», – отмечает Ленин. Реакционную сторону учения Гегеля, его идеализм, мистику, оправдание прусского полуфеодального государства начала XIX столетия пытаются использовать и оживить идеологи фашизма, сознательно искажая и отвергая рациональное в его философии – диалектику и историческое понимание действительности.


Философия религии. Том 2

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Энциклопедия философских наук. Часть 1. Логика

Собрание сочинений в 14 томах. Издательство социально-экономической литературы (Соцэкгиз)Год: 1929-1959.


Рекомендуем почитать
Проблемы жизни и смерти в Тибетской книге мертвых

В Тибетской книге мертвых описана типичная посмертная участь неподготовленного человека, каких среди нас – большинство. Ее цель – помочь нам, объяснить, каким именно образом наши поступки и психические состояния влияют на наше посмертье. Но ценность Тибетской книги мертвых заключается не только в подготовке к смерти. Нет никакой необходимости умирать, чтобы воспользоваться ее советами. Они настолько психологичны и применимы в нашей теперешней жизни, что ими можно и нужно руководствоваться прямо сейчас, не дожидаясь последнего часа.


Зеркало ислама

На основе анализа уникальных средневековых источников известный российский востоковед Александр Игнатенко прослеживает влияние категории Зеркало на становление исламской спекулятивной мысли – философии, теологии, теоретического мистицизма, этики. Эта категория, начавшая формироваться в Коране и хадисах (исламском Предании) и находившаяся в постоянной динамике, стала системообразующей для ислама – определявшей не только то или иное решение конкретных философских и теологических проблем, но и общее направление и конечные результаты эволюции спекулятивной мысли в культуре, в которой действовало табу на изображение живых одухотворенных существ.


Ломоносов: к 275-летию со дня рождения

Книга посвящена жизни и творчеству М. В. Ломоносова (1711—1765), выдающегося русского ученого, естествоиспытателя, основоположника физической химии, философа, историка, поэта. Основное внимание автор уделяет философским взглядам ученого, его материалистической «корпускулярной философии».Для широкого круга читателей.


Русская натурфилософская проза второй половины ХХ века

Русская натурфилософская проза представлена в пособии как самостоятельное идейно-эстетическое явление литературного процесса второй половины ХХ века со своими специфическими свойствами, наиболее отчетливо проявившимися в сфере философии природы, мифологии природы и эстетики природы. В основу изучения произведений русской и русскоязычной литературы положен комплексный подход, позволяющий разносторонне раскрыть их художественный смысл.Для студентов, аспирантов и преподавателей филологических факультетов вузов.


Онтология поэтического слова Артюра Рембо

В монографии на материале оригинальных текстов исследуется онтологическая семантика поэтического слова французского поэта-символиста Артюра Рембо (1854–1891). Философский анализ произведений А. Рембо осуществляется на основе подстрочных переводов, фиксирующих лексико-грамматическое ядро оригинала.Работа представляет теоретический интерес для философов, филологов, искусствоведов. Может быть использована как материал спецкурса и спецпрактикума для студентов.


Ноосферный прорыв России в будущее в XXI веке

В монографии раскрыты научные и философские основания ноосферного прорыва России в свое будущее в XXI веке. Позитивная футурология предполагает концепцию ноосферной стратегии развития России, которая позволит ей избежать экологической гибели и позиционировать ноосферную модель избавления человечества от исчезновения в XXI веке. Книга адресована широкому кругу интеллектуальных читателей, небезразличных к судьбам России, человеческого разума и человечества. Основная идейная линия произведения восходит к учению В.И.


Учение о сущности

К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812 – 2012)Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842 – 1918). Этот перевод издавался дважды:1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах – по числу книг в произведении);1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах – по числу частей в произведении).Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация – своя на каждую книгу)


Учение о понятии

К 200-летию «Науки логики» Г.В.Ф. Гегеля (1812 – 2012)Первый перевод «Науки логики» на русский язык выполнил Николай Григорьевич Дебольский (1842 – 1918). Этот перевод издавался дважды:1916 г.: Петроград, Типография М.М. Стасюлевича (в 3-х томах – по числу книг в произведении);1929 г.: Москва, Издание профкома слушателей института красной профессуры, Перепечатано на правах рукописи (в 2-х томах – по числу частей в произведении).Издание 1929 г. в новой орфографии полностью воспроизводит текст издания 1916 г., включая разбивку текста на страницы и их нумерацию (поэтому в первом томе второго издания имеется двойная пагинация – своя на каждую книгу)