Учебное пособие по курсу «Нейроинформатика» - [38]

Шрифт
Интервал

Из этого уравнения находим b и записываем координаты точки β²:

Эта процедура продолжается дальше, до тех пор, пока при некотором l не выполнится неравенство

или пока l не окажется равной N–1. Оценкой является расстояние от точки b до точки

Она равна следующей величине

Производная оценки по выходному сигналу β>m равна

Для перехода к производным по исходным выходным сигналам α>i необходимо обратить сделанные на первом этапе вычисления оценки преобразования.

3. Двоичный интерпретатор. Оценка для двоичного интерпретатора строится точно также как и для знакового интерпретатора при кодировании номером канала. Пусть правильным ответом является k-ый класс, тогда обозначим через K множество номеров сигналов, которым в двоичном представлении k соответствуют единицы. При уровне надежности оценка задается формулой:

Производная оценки по i-му выходному сигналу равна:

4. Порядковый интерпретатор. Для построения оценки по порядковому интерпретатору необходимо предварительно переставить компоненты вектора a в соответствии с подстановкой, кодирующей правильный ответ. Обозначим полученный в результате вектор через βº. Множество точек, удовлетворяющих условию задачи, описывается системой уравнений , где e — уровень надежности. Обозначим это множество через D. Оценка задается расстоянием от точки b до проекции этой точки на множество D. Опишем процедуру вычисления проекции.

1. Просмотрев координаты точки βº, отметим те номера координат, для которых нарушается неравенство βº>i+e≤βº>i+1.

2. Множество отмеченных координат либо состоит из одной последовательности последовательных номеров i,i+1,…,i+l, или из нескольких таких последовательностей. Найдем точку β¹, которая являлась бы проекцией точки βº на гиперплоскость, определяемую уравнениями β¹>i+e≤β¹>i+1, где i пробегает множество индексов отмеченных координат. Пусть множество отмеченных координат распадается на n последовательностей, каждая из которых имеет вид , где m — номер последовательности. Тогда точка β¹ имеет вид:

3. Точка β¹ является проекцией, и следовательно, расстояние от βº до β¹ должно быть минимальным. Это расстояние равно

Для нахождения минимума этой функции необходимо приравнять к нулю ее производные по γ>m. Получаем систему уравнений

Решая ее, находим

4. Если точка  удовлетворяет неравенствам, приведенным в первом пункте процедуры, то расстояние от нее до точки βº является оценкой. В противном случае, повторяем первый шаг процедуры, используя точку β¹ вместо βº; Объединяем полученный список отмеченных компонентов со списком, полученным при поиске предыдущей точки; находим точку β², повторяя все шаги процедуры, начиная со второго.

Отметим, что в ходе процедуры число отмеченных последовательностей соседних индексов не возрастает. Некоторые последовательности могут сливаться, но новые возникать не могут. После нахождения проекции можно записать оценку:

Обозначим через I>m m-ую последовательность соседних координат, выделенную при последнем исполнении первого шага процедуры вычисления оценки: I>m={i>m,i>m+1,…,i>m+l>m}. Тогда производную оценки по выходному сигналу βº>i можно записать в следующем виде:

Таким образом, построение оценки по интерпретатору сводится к следующей процедуре.

1. Определяем множество допустимых точек, то есть таких точек в пространстве выходных сигналов, которые интерпретатор ответа будет интерпретировать как правильный ответ со стопроцентным уровнем уверенности.

2. Находим проекцию выданной сетью точки на это множество. Проекцией является ближайшая точка из множества.

3. Записываем оценку как расстояние от точки, выданной сетью, до ее проекции на множество допустимых точек. Оценка обучающего множества. Вес примера

В предыдущем разделе был рассмотрен ряд оценок, позволяющих оценить решение сетью конкретного примера. Однако, ситуация, когда сеть хотят обучить решению только одного примера, достаточно редка. Обычно сеть должна научиться решать все примеры обучающего множества. Ряд алгоритмов обучения, которые будут рассматриваться в главе «Учитель», требуют возможности обучать сеть решению всех примеров одновременно и, соответственно, оценивать решение сетью всех примеров обучающего множества. Как уже отмечалось, обучение нейронной сети — это процесс минимизации в пространстве обучаемых параметров функции оценки. Большинство алгоритмов обучения используют способность нейронных сетей быстро вычислять вектор градиента функции оценки по обучаемым параметрам. Обозначим оценку отдельного примера через H>i, а оценку всего обучающего множества через H>OM. Простейший способ получения H>OM из H>i — простая сумма. При этом вектор градиента вычисляется очень просто:

Таким образом, используя способность сети вычислять градиент функции оценки решения одного примера, можно получить градиент функции оценки всего обучающего множества.

Обучение по всему обучающему множеству позволяет задействовать дополнительные механизмы ускорения обучения. Большинство этих механизмов будет рассмотрено в главе «Учитель». В этом разделе будет рассмотрен только один из них — использование весов примеров. Использование весов примеров может быть вызвано одной из следующих причин.


Рекомендуем почитать
Подземоход

Из журнала «Техника - Молодежи» №12, 1955 г.


"Наутилусы" наших дней

Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).


Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.