Учебное пособие по курсу «Нейроинформатика» - [37]

Шрифт
Интервал

2. Кодирование номером канала. Максимальный интерпретатор. Максимальный интерпретатор в качестве номера класса выдает номер нейрона, выдавшего максимальный сигнал. Для такого интерпретатора в качестве уровня уверенности естественно использовать некоторую функцию от разности между максимальным и вторым по величине сигналами. Для этого потребуем, чтобы при обучении для всех примеров обучающего множества разность между максимальным и вторым по величине сигналами была не меньше уровня надежности e. В этом случае уровень уверенности вычисляется по следующей формуле: R=max{1,(α>i>j)/e}, где α>i — максимальный, а α>j — второй по величине сигналы.

3. Двоичный интерпретатор. Уровень надежности для двоичного интерпретатора вводится так же, как и для знакового интерпретатора при кодировании номером канала.

4. Порядковый интерпретатор. При использовании порядкового интерпретатора в качестве уровня уверенности естественно брать функцию от разности двух соседних сигналов в упорядоченном по возрастанию векторе выходных сигналов. Для этого потребуем, чтобы при обучении для всех примеров обучающего множества в упорядоченном по возрастанию векторе выходных сигналов разность между двумя соседними элементами была не меньше уровня надежности e. В этом случае уровень уверенности можно вычислить по формуле , причем вектор выходных сигналов предполагается отсортированным по возрастанию.

В заключение заметим, что для ответа типа число, ввести уровень уверенности подобным образом невозможно. Пожалуй, единственным способом оценки достоверности результата является консилиум нескольких сетей — если несколько сетей обучены решению одной и той же задачи, то в качестве ответа можно выбрать среднее значение, а по отклонению ответов от среднего можно оценить достоверность результата.

Построение оценки по интерпретатору

Если в качестве ответа нейронная сеть должна выдать число, то естественной оценкой является квадрат разности выданного сетью выходного сигнала и правильного ответа. Все остальные оценки для обучения сетей решению таких задач являются модификациями данной. Приведем пример такой модификации. Пусть при составлении задачника величина , являющаяся ответом, измерялась с некоторой точностью e. Тогда нет смысла требовать от сети обучиться выдавать в качестве ответа именно величину . Достаточно, если выданный сетью ответ попадет в интервал . Оценка, удовлетворяющая этому требованию, имеет вид:

Эту оценку будем называть оценкой числа с допуском e.

Для задач классификации также можно пользоваться оценкой типа суммы квадратов отклонений выходных сигналов сети от требуемых ответов. Однако, эта оценка плоха тем, что, во-первых, требования при обучении сети не совпадают с требованиями интерпретатора, во-вторых, такая оценка не позволяет оценить уровень уверенности сети в выданном ответе. Достоинством такой оценки является ее универсальность. Опыт работы с нейронными сетями, накопленный красноярской группой НейроКомп, свидетельствует о том, что при использовании оценки, построенной по интерпретатору, в несколько раз возрастает скорость обучения.

Для оценок, построенных по интерпретатору потребуется следующая функция оценки

и ее производная

Рассмотрим построение оценок по интерпретатору для четырех рассмотренных в предыдущем разделе интерпретаторов ответа.

1. Кодирование номером канала. Знаковый интерпретатор. Пусть для рассматриваемого примера правильным ответом является k-ый класс. Тогда вектор выходных сигналов сети должен удовлетворять следующей системе неравенств:

где e — уровень надежности.

Оценку, вычисляющую расстояние от точки a в пространстве выходных сигналов до множества точек, удовлетворяющих этой системе неравенств, можно записать в виде:

Производная оценки по i-му выходному сигналу равна

2. Кодирование номером канала. Максимальный интерпретатор. Пусть для рассматриваемого примера правильным ответом является k-ый класс. Тогда вектор выходных сигналов сети должен удовлетворять следующей системе неравенств: α>k-e≥α>i при i≠k. Оценкой решения сетью данного примера является расстояние от точки a в пространстве выходных сигналов до множества точек, удовлетворяющих этой системе неравенств. Для записи оценки, исключим из вектора выходных сигналов сигнал α>k, а остальные сигналы отсортируем по убыванию. Обозначим величину α>k-e через β>0, а вектор отсортированных сигналов через β>1β>2≥…≥β>N>-1. Система неравенств в этом случае приобретает вид β>0β>i, при i>1. Множество точек удовлетворяющих этой системе неравенств обозначим через D. Очевидно, что если β>0β>1, то точка b принадлежит множеству D. Если β>0<β>1, то найдем проекцию точки b на гиперплоскость β>0=β>1. Эта точка имеет координаты

Если , то точка β¹ принадлежит множеству D. Если нет, то точку b нужно проектировать на гиперплоскость β>0=β>1=β>2. Найдем эту точку. Ее координаты можно записать в следующем виде (b,b,b,β>3,…,β>N>-1). Эта точка обладает тем свойством, что расстояние от нее до точки b минимально. Таким образом, для нахождения величины b достаточно взять производную от расстояния по b и приравнять ее к нулю:


Рекомендуем почитать
Подземоход

Из журнала «Техника - Молодежи» №12, 1955 г.


"Наутилусы" наших дней

Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).


Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.