У интуиции есть своя логика. Гёдель. Теоремы о неполноте - [6]

Шрифт
Интервал

Когда математик проводит исследование, его цель — решить определенную проблему. Даже сегодня, если спросить у математика, над чем он работает, его ответ наверняка будет состоять в формулировке задачи, которую он пытается решить. Чтобы понять задачу, занимавшую Кантора в 1870 году, нам нужно кратко рассказать о рядах Фурье.

В начале XIX века французский математик Жозеф Фурье разработал метод, позволяющий разложить любую периодическую функцию на сумму определенных элементарных функций (каждая из которых меняет амплитуду, частоту или фазу исходной функции). Фурье успешно применил его для изучения таких волновых явлений, как распространение тепла или колебания пружины. Так как эти суммы обычно затрагивают бесконечное (теоретически) число функций, а в математике результат сложения бесконечного числа величин называют рядом, этот метод получил название рядов Фурье. Сегодня он является важным инструментом во многих отраслях науки, таких как физика и инженерное дело.

В 1860-х годах, также в Галле, немецкий математик Эдуард Гейне работал над проблемой определения того, всегда ли разложение периодической функции на сумму элементарных волн является единственным.

Вопрос о единственности разложения часто встречается в математике. Возьмем натуральные числа (то есть образующие вышеупомянутую последовательность 1, 2, 3, 4...). Вспомним, что простые числа — это числа, которые делятся только на единицу и на самих себя (например, 2, 3, 5 и 11 — простые числа, в то время как 9 таковым не является, поскольку делится на 3).

Уже много тысячелетий известно (об этом знал и Евклид в III веке до н. э.), что любое натуральное число, большее 1, либо простое, либо может быть записано как произведение простых.


РЯДЫ ФУРЬЕ

Французский математик Жан Батист Жозеф Фурье (1768-1830) в начале XIX века установил, что любая периодическая функция — это результат сложения бесконечного числа синусоидальных волн. На рисунке 1 представлена периодическая функция со скачками, или разрывами, во всех целых нечетных числах (положительных и отрицательных), в то время как на рисунке 2 показана основная синусоидальная волна.

РИС. 1

РИС. 2

Функция на рисунке 1 — это результат сложения бесконечного количества волн, изменяющих различными способами основную волну на рисунке 2. Например, мы можем сжать или растянуть ее вертикально или горизонтально. На рисунках 3 и 4 показано, соответственно, вертикальное растяжение волны с рисунка 2 и ее сжатие.

РИС.З

РИС. 4

На рисунке 5 показано горизонтальное сжатие волны с рисунка 2. Волны также могут перемещаться по вертикали или горизонтали: на рисунке 6 показана волна с рисунка 2, смещенная горизонтально.

РИС. 5

РИС. 6


Единица — особый случай, который по техническим причинам рассматривается отдельно: это число не является ни простым, ни произведением простых, хотя причины этого отделения неважны для нашего обсуждения. Например: 12 = 2 х 2 x 3; 9 = 3 x 3; 15 = 3 x 5. Есть ли другой способ записать число 12 как произведение простых чисел? Или вариант 2 х 2 х 3 единственно возможный? Ответ заключается в том, что, не учитывая таких тривиальных вариаций, как изменение порядка чисел или группировки 2 х 2 в виде 2², единственная форма записи 12 в виде произведения простых чисел — это 2 х х 2 х 3, и это верно для всех остальных натуральных чисел.

Разложение на простые числа всегда единственное, и эта единственность создает более сильную связь между числами и их простыми множителями. Благодаря этому свойства разложения (или факторизации) на простые числа становятся сильнее.

Эдуард Гейне задался вопросом, существует ли подобная связь между периодической функцией и элементарными волнами. Единственное ли это разложение, как это установлено для разложения на простые числа? В 1860-х годах Гейне удалось доказать, что некоторые типы периодических функций (например, не имеющие скачков, то есть непрерывные) можно разложить на элементарные волны единственным образом. Однако он не нашел общего доказательства для всех возможных ситуаций, а также не смог доказать единственности в случае, когда в каждом периоде у функции бесконечное (теоретически) число разрывов. Так что когда Кантор приехал в Галле в 1870 году, Гейне предложил ему поработать над этим вопросом: всегда ли периодическую функцию можно разложить единственным образом, даже если количество разрывов в каждом периоде может неограниченно расти?

Кантор принялся изучать проблему и в 1871 году получил первый результат: разложение периодической функции является единственным, даже когда количество разрывов неограниченно растет, если только эти скачки распределяются определенным образом. То есть для гарантии единственности точки появления скачков должны удовлетворять некоторым специфическим условиям. Но ученый столкнулся со сложностями при выражении этих требований точно и элегантно. Он явно имел интуитивную догадку о том, какие особенности хотел выразить, но у него не получалось ясно сформулировать это.

В 1872 и 1873 годах Кантор постепенно понял, что для четкой формулировки условий следует рассматривать точки разрывов как множества, бесконечные в действительности. Более того, требовалось сравнить между собой различные бесконечные множества, подобно тому как 250 лет назад Галилей сравнил натуральные числа с квадратными (это, в свою очередь, привело к отбрасыванию аристотелевского принципа о том, что целое больше его частей). Кантор также открыл, что такое сравнение приводит к выводу о существовании бесконечных множеств, больших, чем другие бесконечные множества.


Еще от автора Густаво Пиньейро
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.