У интуиции есть своя логика. Гёдель. Теоремы о неполноте - [43]

Шрифт
Интервал

Kline, M., Matemdticas, la perdida de la incertidumbre, Mexico D.F., Siglo Veintiuno Editores, 1998.

Martinez, G., Pineiro, G., Godel V (para todos), Barcelona, Destino, 2010.

Martinon, A. (compilador), Las matemdticas del siglo xx (Una mirada en 101 articulos), Madrid, Nivola, 2000.

Nagel, E., Newman, J., El teorema de Godel, Madrid, Tecnos, 1994.

Odifreddi, P., La matemdtica del siglo xx: de los conjuntos a la complejidad, Buenos Aires, Katz Editores, 2006.

Smullyan, R,,Juegos por siempre misteriosos, Barcelona, Gedisa, 1988.

Stewart, I., Historia de las matemdticas, Madrid, Critica, 2008.


Указатель

Аристотель 18-21, 37, 65

арифметика 22, 33, 35, 44-48, 51, 54, 58, 60, 62, 63, 64, 69, 73, 76-78, 81, 83, 84, 107, 108, 110, 112, 115-117, 155-157, 160

Архимед 24

бесконечность

актуальная 19-24, 28, 29, 31, 35, 37, 43, 44

потенциальная 19, 20, 22, 25, 28

Борель, Эмиль 10, 11

Брауэр, Лёйтзен Эгберт Ян 37, 38, 40, 47, 48, 56

Вена 13, 17, 18, 41, 53-57, 67, 90, 92-94, 96, 121, 126, 148

Венский кружок 13, 56-57, 67, 93, 121

Вселенная 21, 101, 124, 126, 127, 156, 157, 158

вращающаяся 123-128

Гёделя 124

Галилей, Галилео 21-23, 29, 37

Гаусс, Иоганн Карл Фридрих 23

Гейне, Эдуард 25, 28

Гейтинг, Аренд 48, 96

Герон Александрийский 45

Гёте, Иоганн Вольфганг фон 54

теория цвета 53, 54

Гиббсовская лекция 13, 149-155

Гильберт, Давид проблемы 7, 8, 42, 45, 46, 56, 65, 128, 137

программа 43-49, 51, 56-58, 61, 64, 65, 68, 74, 84, 87, 96-99, 106-108, 115, 150, 155, 156, 159, 161, 162

гипотеза континуум 43, 128, 136-138, 141, 151, 152

Римана 8

Гольдбах, Кристиан 108

Гольдбаха гипотеза 8, 9, 10, 108

Гудстейна теорема 80, 81

Джинс, Джеймс Хопвуд 126, 127, 140

диагональная функция 78, 79, 110

доказательство семантическое 157, 159, 160

синтаксическое 97, 99, 101, 103, 104, 107, 109-111, 113, 115, 139

единственность 26, 28, 137

разложения на простые числа 28

интуиционизм 36-43, 47, 48, 150, 161

Кантор, Георг 23-25, 28-32, 35, 37, 38, 40, 41, 43, 128, 130-132, 136, 137, 141, 151, 152

Кантора диагональный метод 132-136

код 70-74, 76-82, 109, 110, 111, 113, 114, 116, 117

концептография 32

Коэн, Пол Джозеф 43, 137, 138, 141.152

Кронекер, Леопольд 25, 30, 31, 38

логицизм 36-43, 48, 161

множество 29, 30, 33, 34, 36, 46, 51, 58, 60, 65, 66, 73, 84, 85, 89-91, 99, 101, 103-106, 108, 109, 112, 113, 115-118, 128, 130-132, 134, 136-138, 141, 154-156, 159

бесконечное 28, 29, 128, 130— 32, 154

кардинальное число 128-134, 136, 138, 141

конечное 128, 130

теория 29, 30, 31, 33, 40, 41, 43, 44, 81, 127, 138, 141, 151, 152, 154

множество аксиом 46, 58,60,65, 66,73,89,90,101,103-106, 108,109,112,113,115-118, 155,156,159

неполное 106,109

непротиворечивое 101,103, 106,108,109,112-118,124, 151, 156, 159, 161

омега-непротиворечивое 112

полное 106, 108, 115

противоречивое 103-106, 116, 156, 161

модель 139-141, 153, 154, 157

Моргенштерн, Оскар 91, 122, 147, 148

"Начала" (Евклид) 22, 158

Нейман, Джон фон 48, 49, 91, 94, 146, 148

относительности теория 12, 55, 119, 123, 124, 126, 127, 140

парадокс лжеца 36, 83, 100

Пеано, Джузеппе 46

аксиомы 46, 60, 84, 155-157, 159-161

Планк, Макс 57

Планка принцип 31

платонизм 149-151

понятия семантические 96-100, 104, 156, 157, 159-162

синтаксические 96-99, 101, 103, 104, 106, 109, 115, 151-153, 162

Поркерт, Адель 13, 93-95

правила логики 60, 63, 66, 104, 111, 150, 157

синтаксические 104

Принстон, Институт перспективных исследований 13, 55, 90- 92, 96, 119, 121-123, 125-127, 145-148

Рассел, Бертран 11, 19, 31-37, 56, 70, 100, 104, 105, 124, 161

Рассела парадокс 34, 36, 43, 60, 100, 105, 154, 161

самореференция 36

метод 78-84, 110

семантическая 100

синтаксическая 100

теорема о неполноте (вторая теорема) 49, 65, 90, 106, 117, 143, 149, 152, 156, 160, 162

о неполноте (первая теорема) 7, 13, 41, 48, 51, 57, 64-68, 70, 82, 84, 87, 89, 90, 96, 97-99, 101, 109, 115, 117, 138, 143, 149, 152, 153, 160, 162

о полноте 57, 58-65, 85

Уайлс, Эндрю 59, 75, 85

Ферма теорема 59, 75, 84

формализм 48, 150, 151, 161

Фреге, Готлоб 19, 31-33, 35, 36, 44, 104, 105, 161

Фуртвенглер, Филипп 13, 54, 55, 67

Фурье ряды 25-26, 137

Чёрч, Алонзо 91, 92

число Гёделя 70-74, 76-79, 109, 116, 117

действительное 132, 134, 136

иррациональное 39, 40, 44

квадратное 22, 23, 29, 130

нормальное 10, 11

простое 8, 9, 22, 26-29, 38, 39, 58, 74, 76-78, 83, 99, 100, 102, 103, 107, 108, 116, 117

целое 26, 131, 132, 134, 139, 140

Шлик, Мориц 13, 56, 57, 93

Эйделотт, Франклин Риджвей 145, 146

Эйнштейн, Альберт 13, 18, 55, 90, 91, 94, 119, 122-126, 141, 146, 147, 161



Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств. Так же как и его друг Альберт Эйнштейн, он оспаривал догмы современной науки, и точно так же в его жизни присутствовали война и изгнание.


Еще от автора Густаво Пиньейро
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.

Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим.


Рекомендуем почитать
Динозавры. 150 000 000 лет господства на Земле

Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.