У интуиции есть своя логика. Гёдель. Теоремы о неполноте - [41]
Аксиома 3: последующий элемент для х — это х + 1.
Аксиома 4: (х + у) + 1 = х + (у + 1).
Аксиома 5: произведение х на 1 равно х.
Аксиома 6: х · (у + 1) = х · у + х.
Аксиома 7: если 1 выполняет некое свойство и можно быть уверенным, что и х выполняет это свойство, а значит, его последующий элемент тоже его выполняет, то при таких условиях можно быть уверенным: любое число выполняет это свойство.
Докажем, что аксиомы Пеано непротиворечивы. Для начала заметим, что все семь аксиом — это истинные высказывания (в мире натуральных чисел). Мы уже сказали, что из истинных предпосылок можно вывести только истинные утверждения, следовательно, из аксиом Пеано нельзя вывести ни одного ложного высказывания. Но если множество аксиом противоречиво, то на его основе доказуемо любое высказывание. Поскольку есть высказывания, которые недоказуемы на основе аксиом Пеано (ложные высказывания недоказуемы), то мы делаем вывод, что аксиомы Пеано непротиворечивы.
Во второй теореме о неполноте говорится, что нельзя доказать непротиворечивость аксиом Пеано... но мы только что его доказали. Как это возможно? Ответ, конечно же, в том, что во второй теореме о неполноте на самом деле говорится: невозможно доказать непротиворечивость аксиом Пеано, пользуясь методами программы Гильберта. Доказательство непротиворечивости, которое мы только что осуществили, следовательно, является корректным рассуждением, но не подчиняется ограничениям этой программы: корректность доказательства нельзя проверить алгоритмически.
Это ведет нас напрямую к следствию из теорем Гёделя: не существует алгоритма, который мог бы во всех случаях проверить истинность или ложность арифметического высказывания (если бы это было так, компьютер мог бы проверить корректность доказательства о непротиворечивости, которое мы вывели выше, что, согласно второй теореме Гёделя, невозможно). Другими словами, никогда нельзя будет запрограммировать компьютер так, чтобы можно было доказать все гипотезы арифметики (речь идет о принципиальном ограничении, которое не сможет преодолеть технический прогресс), компьютеры никогда не превзойдут математиков (хотя, как мы увидим далее, также неясно, всегда ли математики будут способны превосходить компьютеры).
Итак, вторая теорема о неполноте оказывается ложной, если мы применим при доказательстве семантические методы. Но что произойдет с первой теоремой Гёделя? Можно доказать, что если мы допустим семантические методы, то любая арифметическая истина доказуема на основе аксиом Пеано. Под семантическими методами мы понимаем те, что основаны на понятии истины. Логическое правило, которое используется в этих рассуждениях, таково: из Р выводится Q, если во всех мирах (или моделях), где Р истинно, Q также истинно (см. рисунок). Вновь возьмем пример доказательства, который мы рассматривали в главе 2, и зададимся вопросом, справедлив ли вывод:
из равенства (а - b) · а = (а - b) с мы делаем вывод, что а = с,
где Р — это высказывание "(а - b) · а = (а - b) · с", a Q — это "а = с". Вывод несправедлив, поскольку существует модель (пример), в которой Р истинно, a Q ложно. Действительно,
если мы возьмем а = b = 2 и с = 3, то получается, что Р истинно, a Q ложно.
При заданном высказывании существует потенциально бесконечное число миров, где оно может быть истинным. Значит, если на одном шаге семантического доказательства мы говорим, что из Р выводится Q, чтобы узнать, верно ли это, нам придется проверить потенциально бесконечное число случаев, где Р истинно, и убедиться, что во всех также истинно Q. Это предполагает бесконечное число проверок, которое не может быть осуществлено компьютером. Также неясно, может ли оно быть осуществлено человеческим разумом.
Евклидова геометрия, изложенная в работе ученого "Начала" (III век до н. э.), основана на пяти постулатах, или аксиомах, которые могут быть сформулированы следующим образом.
1. Через две точки можно провести единственную прямую.
2. Отрезок можно продолжить из любого его конца.
3. При любом центре и любом радиусе можно провести окружность.
4. Все прямые углы равны между собой.
5. Через точку, не лежащую на прямой, можно провести единственную прямую, параллельную данной.
Итальянский математик Эудженио Бельтрами.
Первые четыре постулата очевидны, но пятый имеет высокую понятийную сложность и может оказаться не таким явным, как остальные. На самом деле оригинальная формулировка Евклида для пятого постулата была еще сложнее (выше приведена самая известная формулировка, предложенная английским математиком Джоном Плейфэром в конце XVIII века). Интересно добавить, что в своих доказательствах Евклид старался меньше использовать пятый постулат (как будто он сам немного не доверял его справедливости).
В течение многих веков считалось, что пятый постулат можно доказать на основе четырех других. Было сделано много попыток найти доказательство, но все они провалились. Наконец, в 1868 году Эудженио Бельтрами доказал, что пятый постулат неразрешим относительно остальных четырех, то есть ни сам постулат, ни его отрицание не могут быть доказаны на их основе. Это был первый в истории известный пример неразрешимости относительно множества аксиом — за несколько десятков лет до того, как Гёдель доказал свою теорему. У пятого постулата есть два отрицания: в одном из них говорится, что через точку, не лежащую на прямой, не проходит ни одной прямой, параллельной данной, в другом — что через нее проходит больше одной параллельной прямой. Как пятый постулат, так и его отрицания могут быть добавлены к оставшимся четырем, и во всех случаях получается непротиворечивое множество аксиом. Когда добавляется пятый постулат, получается, конечно же, геометрия Евклида; в оставшихся двух случаях возникают так называемые неевклидовы геометрии. Сегодня считается, что все эти геометрии одинаково справедливы; неевклидовы больше подходят для описания эйнштейновского пространства, искривленного присутствием масс, в то время как евклидова больше приспособлена к нашему восприятию повседневных явлений.
Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.
Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.