У интуиции есть своя логика. Гёдель. Теоремы о неполноте - [27]
В своей работе Principia Mathematica ("Принципы математики") Бертран Рассел утверждал, что все известные парадоксы всегда порождаются самореференцией. То есть они возникают из-за того, что в высказываниях прямо или косвенно говорится о них самих. Способ избежать любого парадокса, говорил Рассел, — исключить из языка любой намек на самореференцию. В семантическом самореферентном высказывании говорится о семантической характеристике как таковой. Таков случай "это предложение ложно", то есть утверждение, вызывающее парадокс лжеца. В синтаксической самореференции, наоборот, в самореферентном высказывании говорится о синтаксической характеристике как таковой. Например: "в этом предложении пять слов". Семантическая самореференция, как говорил Рассел, всегда опасна и подводит нас к границе парадокса. Синтаксическая самореференция, наоборот, не несет в себе никакого риска. Почему? Потому что синтаксическая самореференция иллюзорна; кажется, что в предложении говорится о нем самом, но на самом деле здесь раздвоение: в значении предложения говорится не о нем самом, а о символах, которые его образуют. Когда мы говорим: "в этом предложении пять слов", мы имеем в виду:
"В предложении "в этом предложении пять слов" содержится пять слов".
Отрицание этого:
"В предложении "в этом предложении пять слов" содержится не пять слов".
Мы говорим о символах, а не о смысле, так что нет риска получить парадокс. В высказывании Гёделя G утверждается, что оно недоказуемо, то есть речь идет о синтаксической характеристике себя самого. Так как самореференция синтаксическая, рассуждения на основе G никогда не приведут нас к парадоксу.
Другое важное понятие для синтаксической формулировки первой теоремы о неполноте — это понятие непротиворечивости. Множество аксиом является непротиворечивым, если не существует ни одного высказывания Р такого, чтобы Р и не-Р были одновременно доказуемы на основе этих аксиом (с синтаксической точки зрения не-Р получается простым размещением слева от Р символа, обозначающего отрицание).
Хотя далее мы увидим, какая связь существует между тем, чтобы быть "непротиворечивым" и быть "истинным", очевидно, что непротиворечивость — это чисто синтаксическое понятие (поскольку зависит от синтаксического понятия доказуемости).
Если все аксиомы — истинные высказывания, то множество аксиом непротиворечиво. Действительно, из истинных предпосылок получаются только истинные выводы. Тогда только одно из высказываний Р и не-Р ложно; следовательно, если все аксиомы истинны, невозможно, чтобы Р и не-Р были доказуемы одновременно (ложное не будет доказуемым).
Значит ли это, что выражение "непротиворечивое множество аксиом" равносильно "множеству истинных аксиом"? Это тонкий вопрос, который заслуживает тщательного анализа.
Начнем с вопроса, является ли высказывание "2 — простое число" истинным. Почти любой человек сразу же скажет, что его истинность очевидна. Однако более правильным ответом будет "когда как". Это зависит от Вселенной, в контексте которой мы сейчас работаем. Если подразумевается, что речь идет о натуральных числах, то высказывание действительно истинно, но в другом контексте оно может быть ложным.
Вспомним, что число (отличное от единицы) является простым, если делится только на единицу и само на себя. Можно выразить это понятие по-другому: 2 — простое число, поскольку единственный способ представить его в виде произведения двух чисел тривиален: 2 = 2 x 1 (запись 2 = 1 x 2 считается совпадающей с ней, так как в ней используются те же числа). А вот число 15 не является простым, поскольку его можно представить, помимо тривиального способа 15 = 1 х 15, также как 15 = = 3 x 5.
Но точно ли единственный способ записать число 2 в виде произведения — это 2 = 2 х 1? В мире натуральных чисел — да. Но существуют и другие миры.
Расширим наш числовой мир и включим в него все числа, которые получаются умножением √2 на натуральное число (и на нуль), а затем прибавлением другого натурального числа (или нуля). Например, этот мир содержит числа 3 + 4 √2 или 7 √2. Также в нем содержится само число √2, которое записывается как 0+1 √2, и все натуральные числа, которые могут быть записаны как:
1 = 1 + 0 √2
2 = 2 + 0 √2
3 = 3 + 0 √2.
Итак, в этом мире 2 — не простое число, поскольку может быть записано как 2 = √2 х √2. Высказывание "2 — простое число" верно среди натуральных чисел, но ложно в мире, который мы определили по-другому (см. схему).
Какова связь между непротиворечивостью и истинностью? Ответ дан теоремой Лёвенгейма — Скулема (доказанной в 1915 году Леопольдом Лёвенгеймом для частного случая и в 1920 году Туральфом Скулемом для общего случая): множество аксиом является непротиворечивым, если существует какой-нибудь мир, в котором все аксиомы являются истинными высказываниями. Следовательно, множество, образованное двумя аксиомами:
непротиворечиво, поскольку существует мир, в котором обе аксиомы одновременно истинны. С синтаксической точки зрения это означает, что не существует такого высказывания Р, что Р и не-Р доказуемы на основе этих двух предпосылок одновременно.
Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.