У интуиции есть своя логика. Гёдель. Теоремы о неполноте - [18]
Курт Гёдель в 1935 году, через пять лет после защиты докторской диссертации в Венском университете.
Предположим, что в качестве аксиом были выбраны некоторые истинные арифметические высказывания. Для начала заметим: тот факт, что аксиомы — это истинные утверждения, гарантирует истинность всех высказываний, которые можно будет доказать на их основе, поскольку из истинных предпосылок (при правильных методах рассуждения) можно сделать только истинные выводы. Это гарантирует, что ни одно доказываемое высказывание не будет ложным, однако это ни в коем случае не означает, что все истины доказуемы. Действительно, наша цель — доказать, что существует истинное арифметическое высказывание, которое не может быть доказано на основе этих аксиом (если мы будем придерживаться методов доказательства программы Гильберта).
Главная идея доказательства состоит в том, чтобы получить высказывание G, в котором будет говориться: "G недоказуемо". Другими словами, G может быть записано так: "Это утверждение недоказуемо".
Высказывание G самореферентно и говорит о самом себе, что оно недоказуемо (в дальнейшем слово "доказуемый" всегда должно пониматься как "доказуемый на основе предложенных аксиом"). Докажем, что это высказывание G является недоказуемой истиной.
Для начала заметим, что G либо истинно, либо ложно. Если бы G было ложно, в связи с тем, что в G говорится о самом себе, можно было бы сделать вывод, что G доказуемо. Следовательно, G было бы одновременно ложным и доказуемым, но это невозможно (ведь мы сказали, что исходя из истинных аксиом можно доказать только истинные высказывания). Следовательно, G не может быть ложным.
Следовательно, G истинно, и согласно тому, что оно говорит о самом себе, оно недоказуемо. Так мы делаем вывод, что G — истинное и недоказуемое высказывание (см. схему).
Предыдущая идея, хотя и правильная в целом, имеет одну проблему: G должно быть арифметическим утверждением. Но арифметические высказывания относятся к свойствам натуральных чисел, в них не говорится о других высказываниях и тем более о самих себе. Как мы можем преодолеть это ограничение и сделать так, чтобы арифметическое высказывание относилось к другому высказыванию? Если в высказываниях говорится о числах, а нам надо, чтобы в них говорилось о других утверждениях, то нужно приравнять числа к утверждениям:
Числа ↔ Утверждения.
Требуется связать с каждым арифметическим высказыванием какое-нибудь натуральное число так, чтобы замечание об этом числе было равносильно замечанию о соответствующем утверждении. Например, если бы утверждению соответствовало число 457, мы могли бы считать, что в любом высказывании, в котором речь идет о 457, одновременно речь идет о Р.
Теперь каждому арифметическому высказыванию назначим число, которое назовем числом Гёделя, или его кодом. Назначение чисел Гёделя происходит специфическим способом, который можно запрограммировать для компьютера, однако для того, чтобы в общих чертах понять идею доказательства теоремы о неполноте, нет необходимости углубляться в технические детали. Примеры, которые мы приведем далее, чисто гипотетические и служат только для того, чтобы проиллюстрировать общее понятие. Представим, что:
"4 = 2 + 2" ↔ код 67
"2 — четное число" ↔ код 223
"162 делится на 18" ↔ код 103
"4 — нечетное число" ↔ код 149
"171 — четное число" ↔ код 61.
Мы настаиваем: коды не назначаются наугад или произвольно. Напротив, существует алгоритм, который при заданном высказывании позволяет точно вычислить его код. Также существует обратный алгоритм, который при заданном коде может восстановить высказывание, которому он соответствует. Более того, в действительности коды, если их правильно вычислить, могут содержать десятки цифр. Например, при реальном вычислении утверждению "1 = 1" соответствует код 2187000000000.
Заметим, что в нашем примере два последних высказывания ложны. Это показывает, что числа Гёделя назначаются всем высказываниям, как истинным, так и ложным. С технической целью числа Гёделя также назначаются общим выражениям, таким как "х — четное число" или "х делится на 18". Они относятся не к конкретному числу, а к переменному числу х. Эти выражения Бертран Рассел называл пропозициональными функциями.
Сами по себе пропозициональные функции не являются высказываниями, поскольку высказывание по определению должно быть истинным или ложным, в то время как истинность или ложность фразы "х — четное число" зависит от значения х. Каждый раз, когда мы заменяем х конкретным числом, мы получаем высказывание, которое будет истинным или ложным в зависимости от выбранного числа. Например, если в "х — четное число" заменить х числом 8, то мы получим истинное высказывание "8 — четное число". Наоборот, если заменить х числом 3, мы получим ложное высказывание "3 — четное число".
Мы уже сказали, что каждой пропозициональной функции также назначается число Гёделя (как и для высказываний, эти коды вычисляются с помощью установленного алгоритма). Например, мы можем представить, что:
"х делится на 18" ↔ код 162
Георг Кантор первым среди ученых начал с математической точностью исследовать бесконечность, представлявшую философский интерес. Его новаторский подход к математике воплотился в теории множеств, он сформулировал противоречащие интуиции понятия разных видов бесконечного. До работ, которые были изданы ученым в конце XIX века и стали фундаментальным вкладом в науку, бесконечность, следуя восходившей к Аристотелю научной традиции, понималась как полезная условность. Смелость Кантора стоила ему дорого: его идеи были жестко отвергнуты многими современниками, что, вероятно, послужило причиной его душевной болезни и преждевременной кончины.Прим.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.