Тьюринг. Компьютерное исчисление. Размышления о думающих машинах - [8]
— В-третьих (хотя это требование является дополнительным), желательно, чтобы с помощью алгоритма можно было решить не только конкретную задачу, но все задачи подобного класса, например расставить слова по алфавиту.
— В-четвертых (это также дополнительное требование), путь к решению должен состоять из минимального количества шагов.
Например, процедура стирки состоит из следующих шагов.
— Шаг 1. Разобрать одежду по цветам. Белые вещи и вещи светлых тонов должны стираться отдельно от цветных и темных вещей.
— Шаг 2. Прочитать этикетки на одежде, чтобы выяснить максимальную температуру и способ стирки (а также сушки, глажки и так далее).
— Шаг 3. Насыпать в лоток стиральной машины порошок.
— Шаг 4. Уложить одежду в стиральную машину. Выбрать соответствующую программу и температуру.
— Шаг 5. Достать выстиранную одежду.
— Шаг 6. Конец программы.
На уроках математики в школе используется много простых алгоритмов. Например, решение системы уравнений методом подстановки предусматривает следующий алгоритм.
— Шаг 1. В обоих выражениях выделить одну неизвестную.
— Шаг 2. Уравнять выражения.
— Шаг 3. Решить уравнение.
— Шаг 4. Подставить полученную величину в одно из двух уравнений, где выделена одна неизвестная.
— Шаг 5. Решить получившееся в предыдущем пункте уравнение.
— Шаг 6. Конец программы.
Эти заключения приводят нас к выводу о том, что компьютер представляет собой машину Тьюринга, работающую с алгоритмами. Когда решение задачи может быть выражено в виде алгоритма, считается, что задача разрешима. Швейцарский инженер Никлаус Вирт (р. 1934), автор языков программирования «Алгол», «Модула-2» и «Паскаль», участвовал в разработке определения программы в 1975 году. Согласно его определению, программа — соединение алгоритма с формой организации данных внутри программы; организация данных также получила название структура данных. Отсюда происходит знаменитое выражение Вирта: алгоритм + структура данных = программа.
Несмотря на то что с Тьюрингом всегда ассоциировалась машина, носящая его имя, после того как с трудами этого исследователя познакомился другой замечательный математик, Алонзо Чёрч (1903-1995), последний опубликовал работу, которая отнимала у машины Тьюринга часть оригинальности.
В 1930-е годы Чёрч вместе со Стивеном Клейни (1909-1994) ввели Х-исчисление — абстрактную математическую систему для формализации и анализа вычислимости функций.
Функция — математическое выражение у = f(x), отражающее связь между двумя переменными, например длиной х и весом у синих китов, в виде выражения у = 3,15х - 192. Это понятие, предложенное в XVII веке Декартом, Ньютоном и Лейбницем, в 1930-е годы было пересмотрено с целью разработки общей теории математических функций.
Одной из заслуг Чёрча считается введение нового синтаксиса для представления данного класса математических выражений. Так, если, например, мы вычислим значение выражения (+(*23)(*56)), при этом звездочка — оператор умножения, то получим 36, поскольку (2 · 3) + (5 · 6) = 6 + + 30 = 36. Математическая функция должна быть абстрактной. Также для λ-исчисления используется более сложное выражение (λx. + x1), означающее: «Функция (представленная символом λ) от переменной (здесь х), которая имеет вид λ(x) (представлена здесь как.), добавляет (оператор +) величину переменной (то есть х) к 1». Мы можем несколько усложнить предыдущее выражение, записав ((λ х. + х1)3), результат которого равен 4, поскольку мы указали, что х = 3. Предсказуемо, что для преобразования всех элементов λ-исчисления мы можем усложнять операции. Другой заслугой такого типа исчисления стало его влияние на теорию, изучающую компьютерное программирование.
Однако если λ-исчисление и получило известность, то только благодаря тому, что Чёрч использовал эту абстракцию для изучения проблемы остановки, придя в результате к понятию разрешимой задачи, то есть идеи, лежащей в основе машины Тьюринга. В свою очередь, Тьюринг в 1937 году доказал, что λ-исчисление и его машина эквивалентны, то есть представляют собой два пути, по которым можно прийти к одному результату. Когда машина Тьюринга обрабатывает одно из указанных выражений, например (+31), она останавливается после того, как получен результат, в данном случае 4, то есть эта задача является разрешимой. С практической точки зрения λ-исчисление вдохновило развитие так называемых функциональных языков программирования, одним из примеров которых является «Лисп» — важнейший язык искусственного интеллекта. Появился он в 1958 году благодаря Джону Маккарти (1927-2011), автору термина «искусственный интеллект». Среди характеристик, которые язык унаследовал от λ-исчисления, — использование скобок:
(defstruct persona
(имя Alan)
(возраст 41))
или более просто:
(format t «Привет, Тьюринг!»)
В 1982 году нобелевский лауреат в области физики Ричард Фейнман (1918-1988) выдвинул захватывающую задачу, к которой мы обратимся в последней главе. После обнаружения ограничений в вычислительных способностях машин Тьюринга, помимо известной проблемы остановки (поговорим о ней в следующем параграфе), Фейнман предсказал существование вопросов, которые никогда не смогут быть обработаны компьютером. Он предположил, что и машины Тьюринга, и компьютеры не могут применяться для моделирования явлений квантовой природы, наблюдаемых на уровне атомов и не соответствующих классической физике. Ученый хотел сказать, что квантовые явления относятся к неразрешимым задачам, следовательно, они не могут быть обработаны обычным компьютером: машина Тьюринга, помимо прочих особенностей, должна для этого находиться одновременно в разных состояниях или одновременно считывать данные из разных ячеек. Компьютер для обработки квантовых явлений должен быть способным воспринимать не только состояния 0 и 1, но и возможные средние значения между 0 и 1 и одновременно использовать разные регистры оперативной памяти. После этого, в 1985 году, другой английский физик израильского происхождения, Дэвид Дойч (р. 1953), разработал новый класс машины Тьюринга, в котором эти ограничения были преодолены, — квантовую машину Тьюринга. Квантовые компьютеры способны моделировать неразрешимые задачи, такие как квантовые феномены, и, естественно, их ждет широкое применение.
Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.
Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.
Знаменитый во всем мире популяризатор науки, ученый, инженер и популярный телеведущий канала Discovery, Билл Най совершил невероятное — привил любовь к физике всей Америке. На забавных примерах из собственной биографии, увлекательно и с невероятным чувством юмора он рассказывает о том, как наука может стать частью повседневной жизни, учит ориентироваться в море информации, правильно ее фильтровать и грамотно снимать «лапшу с ушей». Читатель узнает о планах по освоению Марса, проектировании «Боинга», о том, как выжить в автокатастрофе, о беспилотных автомобилях, гениальных изобретениях, тайнах логарифмической линейки и о других спорных, интересных или неразрешимых явлениях науки. «Человек-физика» Билл Най научит по-новому мыслить и по-новому смотреть на мир.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».
«Игра престолов» — один из самых популярных и культовых сериалов последних лет. От него невозможно оторваться, но иногда возникают вопросы: «Неужели так может быть на самом деле?» или «Как они это вообще сделали?». Что представляют собой драконы с точки зрения современной физики и биологии? Как сделать меч из валирийской стали? Почему дикий огонь столь страшен в качестве оружия? Об этом захотят узнать не только фанаты сериала, но и простые зрители.
В этой небольшой книге автор так осветил все основные разделы современного естествознания, чтобы их понял читатель, лишенный всякой специальной подготовки. Благодаря упрощениям автора, основанным на знании конкретной взаимосвязи всех явлений природы, читатель легко поймет содержание книги. Цель книги состоит в том, чтобы дать общий беглый очерк современных научных представлений о явлениях природы, показать универсальность этих представлений и их значение для человека.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.