Тьюринг. Компьютерное исчисление. Размышления о думающих машинах - [7]

Шрифт
Интервал

Символ лентыЗаписанный символПереходСледующее состояние
01ЛЕ2
10ПЕЗ

Символ лентыЗаписанный символПереходСледующее состояние
00ЛЕЗ
11ПЕ1 

Символ лентыЗаписанный символПереходСледующее состояние
01ЛЕ1
10ПЕ2

Читая таблицу переходов и учитывая, что каждая операция реализуется в единицу времени (t>0, t>1, t>2,...), получаем, что начальное положение t>0 имеет следующий вид.

Согласно таблице переходов и учитывая, что машина в начальный момент времени t>0 находится в состоянии Е1, символ на ленте 1, в ячейке будет записан 0, шаг в следующую ячейку справа, состояние изменится на ЕЗ.

Действия машины для следующего момента времени t>1, когда она будет находиться в состоянии ЕЗ, указаны в таблице переходов. Затем, после того как головка считает в ячейке символ 1, машина перейдет в состояние Е2, в ячейке будет записан 0, шаг в следующую ячейку вправо.

После завершения предыдущей операции наступит момент времени t>2. Так как машина находится в состоянии Е2 и из ячейки считывается 1, то, следуя указаниям таблицы переходов, в ячейку будет записано 1, устройство перейдет вправо, и машина изменит состояние на Е1.

Последний момент времени, t>4. Машина находится в состоянии Е1, в считываемой ячейке стоит символ 1. Согласно таблице переходов, в ячейку будет записан 0, шаг вправо, переход в состояние ЕЗ.


У-МАШИНА ТЬЮРИНГА. МОЖЕТ ЛИ МАШИНА БЫТЬ УНИВЕРСАЛЬНОЙ

Одним из ограничений машины Тьюринга является то, что она ведет себя как компьютер, выполняющий единственный алгоритм, то есть способный реализовывать только одну задачу. С исторической точки зрения одной из первых машин Тьюринга стала система AGC (Apollo Guidance Computer — бортовой управляющий компьютер миссии «Аполлон»). Эта машина была главным бортовым компьютером миссий NASA, позволивших совершить доставку человека на Луну 20 июля 1969 года. Задолго до этой эпопеи, осознавая присущее его машине ограничение, Алан Тьюринг сделал расширение своей машины, назвав результат универсальной машиной Тьюринга, или у-машиной. Речь идет о машине Тьюринга, которую можно использовать в виде любой другой машины Тьюринга, то есть способной обрабатывать другие алгоритмы. Таким образом, компьютер — это пример универсальной машины Тьюринга. Еще один пример — смартфоны, или мобильные телефоны, работающие как мини-компьютер.


ЛУННАЯ МИССИЯ «АПОЛЛОН-11»

Один из самых интересных примеров машины Тьюринга — миникомпьютер миссий «Аполлон», организованных NASA для доставки человека на Луну. Это была машина Тьюринга, разработанная в Массачусетском технологическом институте для навигации и прилунения. Среди множества мини-компьютеров, созданных для разных миссий, AGC (Apollo Guidance Computer — бортовой компьютер «Аполлона») был самым популярным. Программа, с помощью которой можно моделировать работу мини-компьютера миссий «Аполлон», а также выполнять современные программы, написанные для Windows, Linux, Mac Os или другой операционной системы, называется Virtual AGC. Она написана на Ассемблере, низкоуровневом языке программирования, в связи с тем что память мини-процессора AGC — всего 38912 символа длиной 15 бит (последовательность 15 единиц и нулей). Программа моделирует виртуальный компьютер в машине AGC, выполняющий программу, хранящуюся в его памяти. На лунном модуле мини-компьютер AGC использовал программу Luminary, в то время как на командном модуле применялась программа Colossus. Обе они доступны на симуляторе.

Модель мини-компьютера миссий «Аполлон» на эмуляторе Virtual AGC.


Превращение автоматической машины Тьюринга в универсальную представляет собой решительный шаг вперед в истории компьютеров. А если рассмотреть еще один факт, имеющий большую важность (знаменитый тезис Чёрча — Тьюринга), то можно сделать вывод, что изобретение компьютеров было уже совсем близко. Американский математик Алонзо Чёрч — одна из ключевых фигур математической логики — совместно с Аланом Тьюрингом сформулировал тезис, названный тезисом Чёрча — Тьюринга. Говоря современным языком, этот тезис устанавливает, что универсальная машина Тьюринга (и, таким образом, компьютер) может решать любые задачи, решение которых может быть выражено в виде алгоритма. Однако нужно учесть, что в то время слово алгоритм еще не использовалось, вместо него говорили «эффективный метод вычисления». Под алгоритмом мы понимаем совокупность шагов или правил, приводящих к определенному результату или решению задачи. Следовательно, для компьютера синонимом алгоритма является решение задачи. Всякий алгоритм обладает рядом свойств.

— Во-первых, количество шагов, приводящее к решению задачи, должно быть конечным, то есть последовательность, приводящая к решению, какой бы длинной она ни была, должна завершаться.

— Во-вторых, шаги или правила должны быть определены четко и однозначно. Приведем простой школьный эксперимент для «измерения числа я»: 1) обмотайте банку бумажной лентой, лишний материал ленты обрежьте; 2) снимите бумажную ленту и измерьте ее длину; 3) поместите банку между двумя книгами и измерьте расстояние между краями книг, соприкасающимися с банкой, для получения диаметра; 4) вычислите частное длины и диаметра. Полученная величина и будет я.


Еще от автора Рафаэль Лаос-Бельтра
Том 28. Математика жизни. Численные модели в биологии и экологии

Жизнь — одно из самых прекрасных и сложных явлений на планете, изучением которого с начала XX века занимается не только одна биология. Физики, а затем и математики обнаружили, что некоторые биологические явления можно описать с помощью математического языка. Так родилась новая дисциплина — математическая биология, или биоматематика. Благодаря ей сегодня можно получить ответы на множество важных вопросов, касающихся биологии и биомедицины. Эта книга представляет собой панорамный обзор различных явлений, которые изучает биоматематика.


Рекомендуем почитать
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.