Творения рук человеческих (Естественная история машин) - [40]

Шрифт
Интервал

Поле возможного оперирования увеличивается для механической руки при помощи ходовой части робота. Ее конструкция может не намного отличаться от конструкции передвижных кранов; здесь важно то, что робот может обслужить полностью все то пространство, которое должно находиться в пределах его досягаемости. Однако существуют и такие машины, для которых обычный монтаж уже не является приемлемым; зачастую случается, что машины некоторых типов, например экскаваторы, должны работать или в условиях очень плохих дорог, или при полном бездорожье. В этих случаях приходится прибегать к новым типам механизмов — к шагающим механизмам. История их создания начинается в последней четверти прошлого века, среди иных механизмов появился прообраз шагающего механизма — «стопоходящая» машина Чебышева. Однако использованные здесь так называемые лямбдаподобные механизмы с одним ведущим звеном могли обеспечить лишь постоянные траектории и не могли учитывать изменения своего пути. Все же, как писали изобретатели первых шагающих механизмов, идея их создания была ими заимствована у Чебышева.

«Стопоходящая» машина должна была копировать движения конечностей человека и животных. Но такие «траекторные» машины имели очень сложную кинематическую схему и не приспосабливались к условиям пути. Для того чтобы машина могла «чувствовать» путь и приспособляться к нему, вводятся соответствующие изменения в схему механизма. Среди разных предложенных систем встречаются очень любопытные решения, например введение синхронно работающих шестнадцати «лап», размещенных по четыре в каждом углу шасси.

Не все предложенные модели оказались приемлемыми в том или ином смысле: слишком многим условиям должны удовлетворять механизмы ходьбы, а самое существенное заключается в том, что они должны быть устойчивыми в любом положении и порядок включения отдельных опорных элементов должен быть строго синхронизирован. Нужно сказать, что в поисках оптимального решения исследователи используют результаты биомеханики и бионики: здесь опять-таки приходится искать подходящее решение у природы.

Выше мы говорили о том, что структурные решения не всегда оказываются приемлемыми и не всегда механизм, построенный правильно, оказывается работоспособным. Но дело не только в этом. Ведь схемы остаются схемами до тех пор, пока не будет доказано, что они удовлетворяют кинематическим и динамическим требованиям, и лишь после этого может встать вопрос о поисках материалов для изготовления звеньев в виде реальных физических тел. Каждый механизм должен иметь возможность передавать и в большинстве случаев преобразовывать движение так, чтобы ведомое звено обладало заранее обусловленными кинематическими и динамическими параметрами. После того как построена правильная кинематическая цепь, надо определить скорости и ускорения всех точек, которые могут интересовать конструктора, а также угловые скорости и угловые ускорения его звеньев. Найденные величины скоростей дадут возможность определить передаточные отношения соответствующих механизмов.

Таким образом, исследование структуры механизма — лишь первый этап изучения той схемы, которая в дальнейшем приведет к созданию и механизма и затем всей машины. Это в том случае, если механизм уже находится в нашем распоряжении и нужно проверить его пригодность для предписанных ему целей. В таком случае решение однозначно, так как структурный скелет машины един, и если мы даже применим к машине разные структурные разбиения и применим к ней какую-либо «неортодоксальную» структурную систему, все равно результат будет одним и тем же.

Противоположная задача — построение механизма по заданным условиям является принципиально иной; как уже говорилось, она многозначна. Для решения одной и той же кинематической задачи можно использовать различные схемы механизмов, они могут содержать в своем составе и разные кинематические пары. Кроме того, при этом необходимо учитывать также самые различные динамические параметры (технологические и экономические условия, требования обслуживания и ремонт, требования надежности и долговечности, а также многие другие условия) в каждом конкретном случае.

Как показал опыт конструкторской работы, в этих случаях значительную помощь могла бы оказать классификация механизмов по функциональным признакам, к такому решению пришел и сам Артоболевский, а его последователь — известный советский механик Сергей Николаевич Кожевников — предложил следующую классификацию механизмов по функциональным признакам: механизмы для сообщения ведомому звену вращения с постоянной угловой скоростью (зубчатые передачи, фрикционные передачи с цилиндрическими и коническими катками, ременные, канатные и цепные, червячные, шариковые); механизмы для сообщения ведомому звену вращения с эпизодически ступенчато изменяющейся угловой скоростью (коробки скоростей из зубчатых колес, ступенчатая ременная и цепная передачи); механизмы для сообщения ведомому звену вращения с переменной угловой скоростью — реверсивные и нереверсивные (передачи некруглыми зубчатыми колесами, некруглыми шкивами, кулачковые механизмы с качающимся коромыслом, двухкривошипные четырехзвенные механизмы, механизмы с вращающейся кулисой, рычажно-зубчатые, кулачково-зубчатые); механизмы для бесступенчатого изменения скорости ведомого звена (гидравлические и фрикционные передачи, передачи гибкой связью, жесткие бесступенчатые); механизмы для сообщения возвратно-поступательного движения с постоянной скоростью (зубчатое колесо и червяк или рейка, гидравлические передачи), а также рычажные механизмы, осуществляющие приближенно движение с постоянной скоростью на некотором участке); механизмы для сообщения ведомому звену движения с увеличенной средней скоростью обратного хода (различные рычажные механизмы, в частности кулисные); механизмы с регулируемым ходом ведомого звена; направляющие механизмы (точные и приближенные) ; механизмы для движения с остановками (храповые и анкерные, мальтийские и звездчатые, рычажные, кулачковые) ; реверсные механизмы, дающие возможность изменять направление вращения или поступательного движения ведомого звена (ременные и гидравлические, фрикционные передачи); компенсирующие и уравнительные механизмы; предохранительные механизмы; суммирующие механизмы и дифференциалы; механизмы для выполнения различных математических операций и для воспроизведения функциональных зависимостей; механизмы регуляторов и модераторов; механизмы с автоматическим регулированием скорости ведомого звена при изменении нагрузки; механизмы управления.


Рекомендуем почитать
Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Современная архитектура Японии. Традиции восприятия пространства

Япония отличается особым отношением к традиционным ценностям своей культуры. Понимание механизмов актуализации и развития традиций, которыми пользуется Япония, может открыть новые способы сохранения устойчивости культуры, что становится в настоящее время все более актуальной проблемой для многих стран мира. В качестве центральных категорий, составляющих основу пространственного восприятия архитектуры в Японии, выделяется триада: пустота, промежуток, тень. Эти категории можно считать инвариантами культуры этой страны, т. к.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.


6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.