Триумф семян. Как семена покорили растительный мир и повлияли на человеческую цивилизацию - [11]
Прорастание включает в себя множество химических реакций, так как после состояния покоя запускается активный обмен веществ, синтезируются все гормоны, ферменты и другие вещества, необходимые для превращения питательных запасов семени в ткани нового растения. У авокадо эти запасы богаты и разнообразны — от крахмала и белка до жирных кислот и сахаров, — так что в питомниках нет необходимости вносить в почву удобрения, пока саженцы не подрастут. Пересаживая свои молодые деревца в почву для горшечных культур, я заметил, что у каждого из них семядоли все еще крепко держатся у основания стебля подобно паре ладоней. В течение многих месяцев и даже лет после того, как у молодых деревьев авокадо появились корни и листья, они все еще могут почерпнуть частицу энергии из «завтраков», приготовленных их «матерями». Такая щедрая забота авокадо о потомстве имеет обоснование. Как и деревья альмендро, авокадо эволюционировали во влажных тропических лесах, где из-за скудного освещения под пологом молодые растения страдают от голода. Поэтому обильный запас собственной пищи обеспечивает всходам существенное преимущество. История авокадо (и их семян) была бы совсем иной, если бы они были родом из пустынь или с высокогорных лугов — мест, где каждое молодое растение легко получает доступ к солнечному свету.
Стратегии выживания семян разных видов значительно различаются — их формы и размеры приспособлены к самым разнообразным местообитаниям на планете. И хотя эти качества делают семена занимательной темой для книги, они же и затрудняют определение того, что именно лежит перед вами — собственно семя или более сложная структура, включающая ткани плода. Строго говоря, семя — это только семенная кожура и ее содержимое. Все, что находится снаружи, — это плод. Однако при семени часто остаются ткани плода для защиты и других целей, настолько сливаясь с ним, что их сложно различить (как в зерновке злака). Поэтому для простоты на практике часто прибегают к интуитивно-понятному определению семени: твердая структура, содержащая внутри зародыш растения. Или еще проще: то, что сеет фермер, чтобы вырастить урожай. Этот функциональный подход уравнивает кедровый орех, арбузную косточку и кукурузное зерно[7], избегая специального обсуждения роли и происхождения каждой из растительных тканей, их образующих. И хотя такое определение прекрасно подходит для этой книги, нельзя не учитывать удивительное многообразие строения того, что мы называем семенем, у разных видов растений.
Поскольку «продукты эволюции», как мы знаем на практике, превосходно приспособлены и успешно работают, легко представить себе процесс, напоминающий грандиозный конвейер, где каждый винтик и шестеренку устанавливают на предназначенное им место для выполнения заданной функции. Однако, как знает всякий поклонник «Войн на свалке» (Junkyard Wars), сериала «МакГайвер» (MacGyver) или изобретений Руба Голдберга[8], назначение самых обычных предметов может быть переосмыслено, а сами они приспособлены для других целей, и все это худо-бедно, но будет работать. Нескончаемое повторение проб и ошибок естественного отбора приводит к тому, что в результате могут появиться любые формы приспособления. Возможно семя — это и вправду всегда «детеныш в коробке с завтраком», но у растений есть бесчисленное количество способов обыграть эти роли. Это похоже на симфонический оркестр. Мелодию чаще всего ведут скрипки, но имеются также фагот, гобой, колокольчики и еще пара дюжин других инструментов, способных в точности воспроизвести мотив. Малер отдавал предпочтение валторне, Моцарт часто писал для флейт, а в Пятой симфонии Бетховена еще и литавры добавляют звучности в это знаменитое «Та-та-та-там!».
Семя авокадо, с его крупными семядолями, представляет собой самый обычный тип семени, но у семян злаков, лилий и некоторых других хорошо известных растений всего одна семядоля, в то время как семя пинии может похвастаться 24 тонкими семядолями. Что же касается «завтрака», то большинство семян содержит продукт опыления, называемый эндоспермом, но и другие ткани семени также способны выполнять эту задачу, включая перисперм (юкка, кофе), гипокотиль (бразильский орех) или мегагаметофит (хвойные). Орхидеи вообще обходятся без «завтрака» — их семена получают необходимую им пищу у почвенных грибов, с которыми они образуют симбиоз. Семенная кожура может быть тонкой, как бумага, например у косточки авокадо, или толстой и крепкой, как у семян тыквы или арбуза. Омела, напротив, заменила семенную кожуру клейкой мякотью, а многие другие семена (косточки вишни, миндаля, грецкого ореха) заимствуют твердую защитную оболочку у внутренней деревянистой части плода. Даже такой существенный параметр, как количество «детенышей в коробке», может меняться у разных видов — от лимона сорта «лисбон», плоды которого вообще не имеют семян, до опунции обыкновенной, у которой иногда в одном семени развивается несколько зародышей.
Пчелы подобны кислороду — они вездесущи, невероятно важны для нас и по большей части невидимы. Хотя мы их часто не замечаем, эти насекомые составляют важную часть отношений человека с миром природы. В книге «Жужжащие» Тор Хэнсон приглашает нас в путешествие, начавшееся 125 млн лет назад, когда первая оса отважилась кормить свое потомство цветочной пыльцой. Эти насекомые — от медоносных пчел и шмелей до менее известных земляных, солончаковых, роющих, пчел-листорезов и пчел-каменщиц — издавна неотделимы от урожайности наших садов и полей, от нашей мифологии, да и от самого нашего существования.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.