Том 40. Математическая планета. Путешествие вокруг света - [13]

Шрифт
Интервал

Рассмотрим несколько примеров, показывающих, почему это так:

12 = 2>2·3 = 2>2·(2 + 1) = 2>3 + 2>2.

15 = 3·5 = (2 + 1)·(2>2 + 1) = 2>3·2>2 + 2 + 1.

Первые натуральные числа также обладают этим свойством:

1 = 2>0, 2 = 2>1, 3 = 2>1 + 2>0, 4 = 2>2, 5 = 2>2 + 1, 6 = 2>2 + 2>1, 7 = 2>2 + 2>1 + 2>0

Если п — натуральное число, обладающее этим свойством, то следующее за ним число, n + 1, также будет обладать этим свойством. В самом деле, если n четное, то ни одно из составляющих его слагаемых не будет равно 2>0 = 1. Следовательно, именно эту степень двойки нужно будет добавить к n, чтобы получить следующее число, + 1. Таким образом, + 1 будет суммой степеней двойки. Если же нечетное, то его разложение на сумму степеней двойки будет оканчиваться 2>0. Чтобы получить из следующее число, n + 1, к нему нужно будет добавить единицу, то есть 2>0. Но в разложении этого числа уже есть одна единица, поэтому получим 2>0 + 2>0 = 1 + 1 = 2 = 2>1. Если слагаемое 2>1 уже фигурировало в разложении, мы получим новое слагаемое, равное 2>2 и так далее. Результат в любом случае будет представлять собой сумму степеней двойки.

Запишем первые 10 натуральных чисел в виде сумм степеней двойки, чтобы вы могли увидеть закономерность, которой они подчиняются.



Древние египтяне выполняли деление по схожему алгоритму, но в обратном порядке, то есть с помощью умножения. К примеру, при делении 92 на 9 они определяли число, на которое нужно умножить 9, чтобы получить 92. Сначала необходимо составить таблицу чисел. В левом столбце запишем последовательность степеней двойки, в правом столбце будем раз за разом удваивать 9, пока оно не превысит 92.



Теперь выберем из правого столбца числа, которые в сумме дают 92. Так как выбрать такие числа нельзя, 92 не делится на 9 нацело. Ближайшая сумма равна 18 + 72 = 90. Следовательно, результат деления равен 2 + 8 = 10 (сумме степеней двойки, соответствующих числам 18 и 72), остаток от деления равен 2.


Счет в разных регионах

Для счета необходимо дать величинам названия, а также предусмотреть символы для их обозначения. Сегодня символы, обозначающие цифры, являются практически универсальными и используются во всех уголках планеты. Названия чисел и слова, используемые при счете, также эквивалентны. Однако даже самый точный перевод не всегда может обеспечить соответствие исходных понятий.

Двести лет назад многие европейцы думали, что африканцы способны считать разве что до 10. Эту точку зрения опровергли некоторые торговцы XVIII века и исследователи-антропологи в XX столетии.

Можно было подумать, что народ кпелле, живший в центральной Либерии и Гвинее, не умел обращаться с числами только потому, что использовал для выполнения арифметических действий кучки камней. Однако в результате исследования, которое провели Гэй и Коул, оказалось, что кпелле точнее оценивают число камней в кучках разных размеров, чем студенты Йельского университета.

* * *

ЖЕСТЫ ДЛЯ ОБОЗНАЧЕНИЯ ЧИСЕЛ В АФРИКЕ

Зулусы — самый многочисленный народ Южной Африки. Они проживают преимущественно в Южноафриканской Республике, а отдельные группы зулусов встречаются в Зимбабве, Замбии и Мозамбике. Камба — язык семейства банту, на котором говорит народ камба, живущий в Восточной Африке, в частности в Кении и Танзании. В следующей таблице приведены жесты, которыми камба и зулусы обозначают числа от 1 до 10.

>Число · Зулусы (Южная Африка) · Камба (Кения)

>1 · Вытянутый левый мизинец · Вытянутый правый указательный палец

>2 · Вытянутый мизинец и средний палец на левой руке · Вытянутый указательный и средний палец на правой руке

>3 · Вытянутые мизинец, безымянный и средний пальцы · Вытянутые указательный, средний и безымянный пальцы правой руки

>4 · Четыре вытянутых пальца · Пары «указательный — средний» и «безымянный — мизинец» правой руки, сложенные в виде буквы V

>5 · Пять вытянутых пальцев · Пальцы правой руки, сложенные в кулак

>6 · Вытянутый большой палец правой руки · Взяться за левый мизинец правой рукой

>7 · Вытянутый большой и указательный палец правой руки · Взяться за мизинец и безымянный палец левой руки правой рукой

>8 · Три вытянутых пальца правой руки · Взяться за мизинец, безымянный и средний палец левой руки правой рукой

>9 · Четыре вытянутых пальца правой руки · Взяться правой рукой за четыре пальца левой руки

>10 · Вытянуть все пальцы · Сжать в кулаки пальцы обеих рук

* * *

Для счета и вычислений мы используем десятичную систему счисления, которую выражаем устно и письменно. В нашем обществе взрослый человек, который считает на пальцах, вызывает удивление — так могут делать только дети в младших классах.

Мы записываем и произносим числа при помощи символов и слов, в которых также отражается десятичное основание нашей системы счисления. Все числа от 1 до 10 обозначаются разными символами и словами. Звучание чисел, больших 10, определяют фонетические корни. Например, числа с 11 до 19 произносятся так.



Аналогично обозначаются и последующие степени числа 10 — основания системы счисления. Первые слоги указывают, сколько степеней десятки нужно выбрать: тридцать (30), пятьдесят (50), двести (200), триста (300), четыре тысячи (4000), сто тысяч (100000). Выражение вида «семь тысяч триста пятьдесят два» неявно подразумевает представление исходной величины в виде суммы степеней 10:


Еще от автора Микель Альберти
Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.