Том 40. Математическая планета. Путешествие вокруг света - [12]
Глава 2
Как считать быстрее и лучше
Что бы вы подумали, если бы увидели на тротуаре бумажку с такими надписями?
Это свободная интерпретация шумерской таблички возрастом более 4600 лет, найденной в городище Шуруппак на территории Ирака. Как отмечает Джордж Ифра (Марракеш, 1947), эта табличка представляет собой древнейшую запись деления чисел. Математик и историк Джордж Ифра — автор объемных и очень подробных трудов о системах счисления во всем мире, созданных задолго до появления математической науки.
В табличке идет речь о разделе ячменя между несколькими людьми. В левом столбце указано исходное количество ячменя, которое нужно разделить: один амбар и семь сил (один амбар равнялся 1152 000 сил). В правом столбце приведены необходимые расчеты. Смысл текста на табличке таков: после того как амбар ячменя был разделен между несколькими людьми, каждому досталось по 7 сил. Всего было 164571 человек, 3 силы оказались лишними.
Числа на табличке записаны при помощи геометрических фигур. Маленький конус обозначал единицу, круг — 10 единиц, большой конус — 60 единиц, большой конус с отверстием — 600, большой круг — 3600, большой круг с отверстием — 36 000 единиц.
Делимое 1152000 раскладывается на степени 60 следующим образом:
1152 000 = 5·60>3 + 2·10·60>2.
Но вместо того, чтобы записать его в таком виде, автор таблички, который не умел представлять большие числа, применил самое большое число, известное в ту эпоху, то есть 36000. Если мы хотим записать число 1152000 при помощи кругов с отверстиями, нам потребуются 32 круга:
1152 000 = 32·36 000.
Разделив эти 32 круга на 7 частей, получим, что в каждой части будет по 4 круга и еще 4 круга окажутся лишними. Четыре круга, доставшихся каждому человеку, составляют частное и записаны в верхней правой части таблички. Четыре оставшихся круга представляют собой остаток от первого деления. Их нужно снова разделить на 7 частей. Так как остаток равен 4·36 000 сил, получим:
4·36 000 = 144 000 = 40·3600,
то есть 40 больших кругов без отверстий. Разделим их на группы по 7 и получим, что частное — 5 кругов, остаток — тоже 5 кругов. Оставшиеся круги, обозначающие 5·3600 единиц, делятся на большие конусы с отверстиями по 600 единиц:
5·3600 = 18 000 = 30·600.
Имеем 30 больших конусов с отверстиями, которые нужно разделить на семь частей. Частное равно 4, остаток — 2. Таким образом, остались 2 больших конуса с отверстиями, то есть 2·600 = 1200 единиц, которые снова нужно разделить на 7 частей. Для этого используем следующую единицу измерения — конус без отверстий, обозначающий 60 единиц:
1200 = 20·60.
Эти 20 конусов, в свою очередь, снова делятся на 7. Результат деления равен 2, остаток — 6. Таким образом, лишними оказались 6 * 60 = 360 единиц. Они обозначаются 36 шарами по 10 единиц каждый:
360 = 36·10.
* * *
ВЫЧИСЛЕНИЯ ШУМЕРОВ
На латыни слово calculus означало маленькие камни или кусочки глины, которые в зависимости от формы и размера обозначали разные величины. От этого слова произошло современное «калькулятор»». Шумеры использовали для обозначения величин не камни, а маленькие конусы и шарики, в которых проделывали отверстия. Современные врачи называют «calculus renalis» камни в почках — небольшие плотные образования, возникающие в результате кальцификации.
* * *
Результат деления 36 на 7 равен 5, остаток — 10 единиц, или, что аналогично, 10 маленьких конусов. Разделим их на 7 частей и получим последний остаток в 3 единицы, или 3 маленьких конуса. Все описанные выше действия приведены в таблице.
Фигурам, изображенным в верхней правой ячейке глиняной таблички, соответствуют числа в третьем столбце таблицы. Под этими фигурами на табличке изображены три маленьких конуса, обозначающие остаток от деления (им соответствует четвертый столбец таблицы). Разумеется, деление было проведено по всем правилам.
Древние египтяне, жившие в 2000 году до н. э., с легкостью выполняли умножение и деление на 10 — для этого им было достаточно заменить символы, обозначавшие цифры исходного числа, меньшими или большими символами соответственно.
На следующем рисунке в качестве примера показано, как записывались числа 48 и 480 (напомним, что египтяне писали справа налево).
При умножении на другие величины они использовали не алгоритм, подобный нашему, а последовательное умножение или деление на 2. Так, чтобы умножить 117 на 14, они записывали числа в два столбца. В левом столбце записывались последовательные степени двойки, в правом — числа, кратные 14. Запись прекращалась, когда следующая степень двойки превышала число, на которое умножалось 14, то есть 117.
Теперь нужно выбрать из правого столбца числа, которые в сумме дают 117:
1 + 4 + 16 + 32 + 64 = 117.
Следовательно, результат умножения равен сумме чисел из правого столбца, соответствующих этим слагаемым:
14 + 36 + 224 + 448 + 896 = 1638.
Действия, выполняемые в левой колонке, равносильны представлению большего из множителей в двоичной системе счисления:
117 = 1·2>6 + 1·2>5 + 1·2>4 + 0·2>3 + 1·2>2 + 0·2>1 + 1·2>0 = 1110 101 >(в двоичной системе)
Это выражение определяет результат. Египтяне, жившие 4 тысячи лет назад, при умножении, по-видимому, неосознанно переводили числа в другую систему счисления. Их метод оказался успешным потому, что из левого столбца всегда можно выбрать числа таким образом, что их сумма будет равна требуемому числу. Иными словами, натуральное число всегда можно выразить в двоичной системе счисления.
В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.